Teres-1t.ru

Инженерные решения
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения трехфазного счетчика через трансформаторы тока

Схема подключения трехфазного счетчика через трансформаторы тока

Трансформаторы тока (далее ТТ) — это устройства, предназначенные для преобразования (снижения) тока до значений, при которых возможна нормальная работа приборов учета.

Проще говоря, они используются в щитах учета для измерения расхода электроэнергии потребителей большой мощности, когда непосредственное или прямое включение счетчика недопустимо из-за высоких токов в измеряемой цепи, способных привести к сгоранию токовой катушки и выводу прибора учета из строя.

Конструктивно эти устройства представляют собой магнитопровод с двумя обмотками: первичной и вторичной. Первичная (W1) подключается последовательно к измеряемой силовой цепи, к вторичная (W2) — к токовой катушке прибора учета.

Первичная обмотка выполняется с большим сечением и меньшим количеством витков чем вторичная, часто выполняется в виде проходной шины. Снижение тока (собственно, коэффициент трансформации) — это отношение тока W1 к W2 (100/5, 200/5, 300/5, 500/5 и т. д.).

Помимо преобразования измеряемого тока до допустимых для измерения значений, ввиду отсутствия связи W1 с W2 в ТТ происходит разделение измерительных и первичных цепей.

Как устроен трансформатор тока?

На следующем рисунке схематично обозначены процессы, протекающие в трансформаторе тока при превращении электроэнергии.

принцип работы трансформатора тока

По первичной силовой обмотке с количеством витков ω1 течет ток I1, при этом он преодолевает ее полное сопротивление Z1. Вокруг катушки возникает магнитный поток Ф1, он фиксируется с помощью магнитопровода, находящегося перпендикулярно по отношению к вектору I1. Подобный способ расположения позволяет превращать электрическую энергию в магнитную с наименьшими потерями.

При пересечении перпендикулярных витков обмотки ω2 поток Ф1 создает в них электродвижущую силу Е2, под ее действием во вторичной обмотке появляется ток I2, который преодолевает полное сопротивление катушки Z2 и подсоединенной на выходе нагрузки Zн. В процессе напряжение U2 на зажимах вторичной цепи падает.

Читайте так же:
Корпус для счетчика прозрачная

Коэффициент трансформации К1, можно посчитать, разделив вектор I1 на вектор I2. Это один из основных параметров трансформаторов тока, он определяется прежде, чем начинают проектировать устройство, а в действующих трансформаторах его измеряют. Однако, как и при работе любых приборов, реальные показания отличаются от теоретических. Для учета таких погрешностей существует специальная метрологическая характеристика, или класс точности трансформатора тока.

В отличие от расчетов, при работе трансформатора тока в жизни величины токов в обмотках не являются константами, так что коэффициент трансформации рассчитывают по номиналам. К примеру, если коэффициент трансформации равен 1000/5, то это значит, что в первичном витке течет ток величиной 1 кА, а во вторичных действует нагрузка 5 А. Исходя из данных величин, можно понять, как долго трансформатор тока прослужит.

Магнитный поток Ф2, возникающий благодаря вторичному току I2, понижает величину потока Ф1 в магнитопроводе. В процессе возникающий поток трансформатора Фт рассчитывается как геометрическая сумма векторов Ф1 и Ф2.

Расчет и выбор устройства

Расчет и выбор устройства

Перед началом работы с трансформатором необходимо правильно рассчитать его мощность. Так как сейчас на рынке присутствует большое количество устройств этого типа, обладающих различными характеристиками, ошибиться в выборе довольно легко. Дело в том, что при недостаточной мощности прибор не сможет решить поставленную задачу, а при высоком показателе увеличится расход энергии.

При этом рассчитать требуемую мощность на практике очень просто. Если предположить, что в помещении установлено шесть ламп по 30 Вт при напряжении в 12 В, то общая мощность всех осветительных элементов составит 180 Вт.

Любое электронное устройство следует выбирать с небольшим запасом, составляющим от 10 до 15 процентов. В результате для решения поставленной задачи предстоит приобрести трансформатор для галогенных ламп мощностью около 207 Вт.

МАРКИРОВКА ТОКОВЫХ ТРАНСФОРМАТОРОВ

Условное обозначение устройств отечественного производства осуществляется в соответствии с нормативной документацией и техническими условиями ми (ТУ).

Читайте так же:
Счетчики подробной статистики для сайта

Она имеет следующий вид:

  • Т — первая буква в обязательном порядке «Т» означает, что устройства относятся к трансформаторным;
  • N — конструкционные особенности устройства: проходной (П), опорный (О), с использованием шины в качестве первичной обмотки (Ш), с фарфоровой изоляцией корпуса (Ф);
  • M — материал изоляции обмоток: «М» — масляная (фактически, смешанная бумажно-масляная изоляция), «Л» — литая (эпоксидная смола), «Г» – газовая;
  • Х1 — значение рабочего (номинального) напряжения;
  • Х2 — вариант конструкционного исполнения. Как правило, касается расположения контактов первичной и вторичной обмоток как;
  • Х3 — габаритные размеры корпуса. Чаще всего, эта маркировка применяется для трансформаторов, устанавливаемых в силовых шкафах. Код привязывают к длине корпуса;
  • Х4 — буквенный код определяющий расположение выводов вторичной катушки относительно установочного основания. «А» — параллельно установочной поверхности, «Б» — перпендикулярно относительно установочной поверхности;
  • Х5 — наличие и тип изолирующих барьеров;
  • Х6 – значение точности при передаче данных, внешняя цепь;
  • Х7 — коэффициента безопасности для исходящих катушек (измерительные цепи);
  • Х8 – значение точности для исходящих катушек (измерительные цепи);
  • Х9 — коэффициент кратности;
  • Х10 – рабочее значение нагрузки для устройств измерения;
  • Х11 — рабочее значение нагрузки для устройств защиты;
  • Х12 — значение входящего и исходящего тока;
  • Х14 — максимальное значение силы тока при односекундном воздействии короткого замыкания на пределе термической стойкости;
  • Х15 — климатическое исполнение оборудования.

В соответствии с ГОСТ силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 2500 кВА могут изготавливаться со следующими схемами соединения обмоток:

«звезда/звезда» — Y/Yн-0 ;
«треугольник-звезда» — D/Yн-11 ;
«звезда-зигзаг» — Y/Zн-11 .
Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз.
Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы — А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят.
Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих . Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.

Читайте так же:
Перемычки счетчика меркурий 230

* У/УН-0 : обмотка ВН соединена в звезду, обмотка НН – в звезду в выведенной
нейтралью; группа 0;

* Д/УН-11 : обмотка ВН соединена в треугольник, обмотка НН – в звезду с
выведенной нейтралью; группа 11;

* У/ZН-11 : обмотка ВН соединена в звезду, обмотка НН- в зигзаг с выведенной
нейтралью; группа 11.

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн-11. Несколько меньший эффект дает схема Y/Yн-0. Схему D/Yн-11 для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов D/Yн-11 может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

  • Рекомендуем
  • Комментарии

Что такое ревизия трансформатора

Читать далее

Характеристики трансформаторов ТМ

Читать далее

Пункт коммерческого учета (ПКУ-10)

Читать далее

Зависимость температуры и мощности нагрева от варианта схемы подключения

Мощность нагревателя – это параметр, на который многие покупатели ориентируются при покупке. По сути же мощность ТЭНа зависит только от показателя сопротивления резистивной спирали. Конечно же, если не использовать электротрансформаторы и питание от определенной сети будет постоянным. Данное свойство можно легко вычислить, по простой формулой из курса физики:

Мощность (P) = Напряжение (U) * Сила тока (I)

В данном случае за величину напряжения берем разницу потенциалов между выводами электрического ТЭНа, а силу тока нужно измерять ту, которая будет протекать по резистивной спирали.

Силу тока можно вычислить по формуле I=U/R, где R – электрическое сопротивление нагревательной спирали. Теперь подставим данное значение в формулу мощности, и получится, что мощность ТЭНа зависит только от напряжения и сопротивления.

Читайте так же:
Шунт счетчике меркурий 200

Таким образом, делаем вывод, что при постоянном напряжении сети питания мощность электронагревателя будет меняться только при изменении сопротивления.

Значение сопротивления резистивного элемента в основной массе ТЭНов имеет прямую зависимость от значения выделения температуры. Но в нагревателях с нихромовой или фехралевой нитью накаливания, к примеру, в пределах нескольких сотен градусов сопротивление зачастую не изменяется.

В ситуации с высокотемпературными нагревателями из карбида кремния или дисилицид молибдена все будет совсем подругому. В выскотемпературных нагревателях с увеличением температуры, сопротивление падает очень значительно в пределах от 6 до 0,6 Ом, что делает их очень экономичными в плане потребления электроэнергии.

Но из-за данного качества высокотемпературных ТЭНов их нельзя подключать напрямую к сети питания 220В, не говоря уже о 380В. Технически возможно произвести подключение к 220в, если соединение будет последовательно. Но все же при данном способе не будет возможности контролировать мощность и температурную нагревателей. Для подключения высокотмепературных нагревателей состоящих не из металла, следует использовать специализированные трансформаторы или же стандартные статистические ЭМ устройства.

звезда или треугольник для тэнов лучше

В компании «РОСНАГРЕВ» вы можете приобрести электронагреватели, которые производятся специально с учетом подключения к трехфазной сети питания. Это сухие цилиндрические ТЭНы, блок Тэны для воды и трехстержневые КЭНы. Тип подключения данных нагревателей зависит от напряжения по схеме звезды или треугольника.

При подключении электрических нагревателей в соответствии со схемой ТРЕУГОЛЬНИК соединяются три нагревательных спирали, у которых равные значения резистивной спирали и на питание будет подано 380В. Подключение ТЭНов ЗВЕЗДА подразумевает наличие нулевой точки вывода, а на каждый ТЭН будет подаваться 220В. Нулевой провод позволяет подключать потребители с разным значением резистивной спирали.

медный или нержавеющий тэн

Корпус ТЭНов в бытовых и промышленных приборах(водонагревателях) изготавливают чаще всего из сплавов меди или нержавеющей ПОДРОБНЕЕ

Читайте так же:
Тарифы по водным счетчикам

как проверить тэн

Нагревательные элементы используются в большом количестве бытовых устройств: утюги, электрические чайники, стиральные машины, бойлеры и ПОДРОБНЕЕ

сгорел тэн

Причины неисправности ТЭНа Одной из главных причин неправильной работы или выхода из строя стиральных машин, ПОДРОБНЕЕ

provoda-dlya-tena

Термостойкие провода и кабеля используются в любом оборудовании, питание которого происходит от сети. Долгое функционирование ПОДРОБНЕЕ

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector