Teres-1t.ru

Инженерные решения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить и подобрать мощность резистора (сопротивления)

Как определить и подобрать мощность резистора (сопротивления)

Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется. Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе. Для мелких корпусов есть другой метод определения (см. ниже).

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.

Общий вид элементов

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.
Читайте так же:
Как проверить провода теплого пола

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным.

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

  • Закон Ома: в электрической цепи с сопротивлениями постоянный ток выступает прямо пропорциональным напряжению.

Постоянный ток представляет собою перемещение электрического заряда в едином направлении. Это обычное состояние цепи со стабильным напряжением. Но чаще всего используют переменный ток, который периодически меняет направление. Если источник меняется с периодами (особенно синусоидально), то схему именуют цепью переменного тока. Конечно, частоты переменного тока, которые используют в домах и предприятиях, отличаются по всему миру.

(а) – Постоянные ток и напряжение остаются стабильными во времени. (b) – График напряжения и тока, основывающихся на времени, для мощности переменного тока в 60Гц. Они синусоидальные и расположены в фазе для простой схемы сопротивления. Частоты и пиковые напряжения источников сильно отличаются

Мы уже рассматривали закон Ома:

Читайте так же:
Тепловое действие тока в картинках

I = V/R (I – ток, V – напряжение, R – сопротивление цепи). Его можно использовать для цепей переменного и постоянного тока. Поэтому при переменном напряжении, заданном:

V = Vsin (2πνt), где V – пиковое напряжение, а ν – частота в герцах, ток в цепи определяется как:

В этом примере мы располагаем резистором и источником напряжения в цепи, где ток и напряжение считаются разными. Ток в резисторе перемещается назад/вперед без разности фаз, как и напряжение.

Давайте взглянем на идеальный резистор, светлеющий и тускнеющий 120 раз в секунду. Колебание светового потока говорит о колебании мощности. Так как P = IV, используем указанные выше формулы, чтобы рассмотреть зависимость мощности от времени:

Чтобы отыскать среднюю мощность, потребляемую схемой, необходимо взять среднее время от функции:

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор фото

Радиальный выводной резистор

Аксиальный выводной резистор фото

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

Читайте так же:
Применение теплового действия тока презентация

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u = U m a x cos . ω t

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i = u R . . = U m a x cos . ω t R . . = I m a x cos . ω t

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

I m a x = U m a x R . .

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Читайте так же:
Минимальный ток под пк тепловоза должен быть не менее

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p = ( I m a x cos . ω t ) 2 R

Вспомним из курса математики:

cos 2 . α = 1 + cos . 2 α 2 . .

p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos . 2 ω t > 0 , мощность в любой момент времени больше величины I 2 m a x R 2 . . . На протяжении второй четверти периода, когда cos . 2 ω t < 0 , мощность в любой момент времени меньше этой величины. Среднее за период значение cos . 2 ω t = 0 , следовательно, средняя за период мощность равна I 2 m a x R 2 . . .

Средняя мощность − p равна:

− p = I 2 m a x R 2 . . = − i 2 R

Пример №2. Сила переменного тока в цепи меняется по закону i = I m a x cos . ω t . Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p = ( I m a x cos . ω t ) 2 R = 10 ( 1 · cos . ( 100 π · 1 ) 2 = 10 ( Д ж )

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

− i 2 = I 2 m a x 2 . .

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I = √ − i 2 = I m a x √ 2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U = √ − u 2 = U m a x √ 2 . .

Читайте так же:
Количество теплоты выделяемое током величина

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P = ( I m a x √ 2 . . ) 2 R = I 2 m a x 2 . . R = 2 2 2 . . · 5 = 10 ⎛ ⎝ Д ж ⎞ ⎠

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = Ucos ωt, где U = 5 В, ω = 1000π с – 1 . Определите период колебаний напряжения на конденсаторе.

Маркировка резисторов

Постоянные резисторы обычно имеют очень небольшие размеры. Есть и крупные резисторы, но они используются для более специфических задач, так как они способны выдерживать большие токи, напряжения и температуры.

Резистор большой мощности

Для удобства обозначения основных параметров мелких постоянных резисторов используется цветовая маркировка. На корпус резистора наносятся несколько цветных полос, цвета которых имеют свое значение. Для расшифровки используется либо таблица постоянных резисторов либо онлайн калькуляторы цветовой маркировки.

Цветовая маркировка резисторов

Список использованной литературы

  1. Электрорадиоматериалы. Методические указания к лабораторным работам./ Под ред. С.А.Гусева. Изд. второе пер. и доп.; Балт. гос. техн. ун -т, СПб., 2000.
  2. Пасынков В. В. Материалы электронной техники. М.: Высшая школа, 1980.
  3. Богородицкий Н. П., Пасынков В. В., Тареев Б. М. Электротехнические материалы. Л.: Энергия, 1977.
  4. Справочник по электротехническим материалам. Тт. 1 – 3/ Под ред. Д. В. Корицкого и др. Л.: Энергия, 1974—1976.

Форум по обсуждению материала ТЕРМОРЕЗИСТОРЫ

Простой переходник для корпусов TQFP с самоцентрированием микросхемы, собранный своими руками.

Схема усилителя и микрофона из пьезоэлемента, подходящая для сборки своими руками.

Электрофорез "Поток-1" — схема, инструкция и самостоятельное изготовление медицинского прибора.

Обзор готового модуля усилитель звуковой частоты на TDA7377 с модулем Bluetooth для беспроводной передачи аудиосигнала.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector