Teres-1t.ru

Инженерные решения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Так ли страшна радиация: все, что нужно знать об излучении

Так ли страшна радиация: все, что нужно знать об излучении

Так ли страшна радиация: все, что нужно знать об излучении

Что же такое радиация? Так называют различные виды ионизирующего излучения, то есть того, которое способно отрывать электроны от атомов вещества. Три основных вида ионизирующего излучения принято обозначать греческими буквами альфа, бета и гамма. Альфа-излучение — это поток ядер гелия-4 (практически весь гелий из воздушных шариков когда-то был альфа-излучением), бета — поток быстрых электронов (реже позитронов), а гамма — поток фотонов высокой энергии. Еще один вид радиации — поток нейтронов. Ионизирующее излучение (за исключением рентгеновского) — результат ядерных реакций, поэтому ни мобильные телефоны, ни микроволновые печи не являются его источниками.

Заряженное оружие

Из всех видов искусства для нас важнейшим, как известно, является кино, а из видов радиации — гамма-излучение. Оно обладает очень высокой проникающей способностью, и теоретически никакая преграда не способна защитить от него полностью. Мы постоянно подвергаемся гамма-облучению, оно приходит к нам сквозь толщу атмосферы из космоса, пробивается сквозь слой грунта и стены домов. Обратная сторона такой всепроникаемости — относительно слабое разрушающее действие: из большого количества фотонов лишь малая часть передаст свою энергию организму. Мягкое (низкоэнергетическое) гамма-излучение (и рентгеновское) в основном взаимодействует с веществом, выбивая из него электроны за счет фотоэффекта, жесткое — рассеивается на электронах, при этом фотон не поглощается и сохраняет заметную часть своей энергии, так что вероятность разрушения молекул в таком процессе значительно меньше.

Бета-излучение по своему воздействию близко к гамма-излучению — оно тоже выбивает электроны из атомов. Но при внешнем облучении оно полностью поглощается кожей и ближайшими к коже тканями, не доходя до внутренних органов. Тем не менее это приводит к тому, что поток быстрых электронов передает облученным тканям значительную энергию, что может привести к лучевым ожогам или спровоцировать, например, катаракту.

Альфа-излучение несет значительную энергию и большой импульс, что позволяет ему выбивать электроны из атомов и даже сами атомы из молекул. Поэтому причиненные им «разрушения» значительно больше — считается, что, передав телу 1 Дж энергии, альфа-излучение нанесет такой же ущерб, как 20 Дж в случае гамма- или бета-излучения. К счастью, проникающая способность альфа-частиц чрезвычайно мала: они поглощаются самым верхним слоем кожи. Но при попадании внутрь организма альфа-активные изотопы крайне опасны: вспомните печально известный чай с альфа-активным полонием-210, которым был отравлен Александр Литвиненко.

Нейтральная опасность

Но первое место в рейтинге опасности, несомненно, занимают быстрые нейтроны. Нейтрон не имеет электрического заряда и поэтому взаимодействует не с электронами, а с ядрами — только при «прямом попадании». Поток быстрых нейтронов может пройти через слой вещества в среднем от 2 до 10 см без взаимодействия с ним. Причем в случае тяжелых элементов, столкнувшись с ядром, нейтрон лишь отклоняется в сторону, почти не теряя энергии. А при столкновении с ядром водорода (протоном) нейтрон передает ему примерно половину своей энергии, выбивая протон с его места. Именно этот быстрый протон (или, в меньшей степени, ядро другого легкого элемента) и вызывает ионизацию в веществе, действуя подобно альфа-излучению. В результате нейтронное излучение, подобно гамма-квантам, легко проникает внутрь организма, но там почти полностью поглощается, создавая быстрые протоны, вызывающие большие разрушения. Кроме того, нейтроны — это то самое излучение, которое вызывает наведенную радиоактивность в облучаемых веществах, то есть превращает стабильные изотопы в радиоактивные. Это крайне неприятный эффект: скажем, с транспортных средств после пребывания в очаге радиационной аварии альфа-, бета- и гамма-активную пыль можно смыть, а вот от нейтронной активации избавиться невозможно — излучает уже сам корпус (на этом, кстати, и был основан поражающий эффект нейтронной бомбы, активировавшей броню танков).

Доза и мощность

При измерении и оценке радиации используется такое количество различных понятий и единиц, что обычному человеку немудрено и запутаться.
Экспозиционная доза пропорциональна количеству ионов, которые создает гамма- и рентгеновское излучения в единице массы воздуха. Ее принято измерять в рентгенах (Р).
Поглощенная доза показывает количество энергии излучения, поглощенное единицей массы вещества. Ранее ее измеряли в радах (рад), а сейчас – в греях (Гр).

Эквивалентная доза дополнительно учитывает разницу в разрушительной способности разных типов радиации. Ранее её измеряли в «биологических эквивалентах рада» — бэрах (бэр), а сейчас – в зивертах (Зв).
Эффективная доза учитывает ещё и различную чувствительность разных органов к радиации: например, облучать руку куда менее опасно, чем спину или грудь. Ранее измерялась в тех же бэрах, сейчас — в зивертах.

Перевод одних единиц измерения в другие не всегда корректен, но в среднем принято считать, что экспозиционная доза гамма-излучения в 1 Р принесёт организму такой же вред, как эквивалентная доза 1/114 Зв. Перевод рад в греи и бэров в зиверты очень прост: 1 Гр = 100 рад, 1 Зв = 100 бэр. Для перевода поглощённой дозы в эквивалентную используют т.н. «коэффициент качества излучения», равный 1 для гамма- и бета-излучения, 20 для альфа-излучения и 10 для быстрых нейтронов. Например, 1 Гр быстрых нейтронов = 10 Зв = 1000 бэр.

Читайте так же:
Счетчик населения земли как работает

Природная мощность эквивалентной дозы (МЭД) внешнего облучения обычно составляет 0,06 – 0,10 мкЗв/ч, но в некоторых местах может быть и менее 0,02 мкЗв/ч или более 0,30 мкЗв/ч. Уровень более 1,2 мкЗв/ч в России официально считается опасным, хотя в салоне самолёта во время перелёта МЭД может многократно превышать это значение. А экипаж МКС подвергается облучению с мощностью примерно 40 мкЗв/ч.

В природе нейтронное излучение весьма незначительно. По сути, риск подвергнуться ему существует лишь при ядерной бомбардировке или серьезной аварии на АЭС с расплавлением и выбросом в окружающую среду большей части активной зоны реактора (да и то лишь в первые секунды).

Газоразрядные счетчики

Радиацию можно обнаружить и измерить с помощью различных датчиков. Самые простые из них — ионизационные камеры, пропорциональные счетчики и газоразрядные счетчики Гейгера-Мюллера. Они представляют собой тонкостенную металлическую трубку с газом (или воздухом), вдоль оси которой натянута проволочка — электрод. Между корпусом и проволочкой прикладывают напряжение и измеряют протекающий ток. Принципиальное отличие между датчиками лишь в величине прикладываемого напряжения: при небольших напряжениях имеем ионизационную камеру, при больших — газоразрядный счетчик, где-то посередине — пропорциональный счетчик.

Сфера из плутония-238 светится в темноте, подобно одноваттной лампочке. Плутоний токсичен, радиоактивен и невероятно тяжел: один килограмм этого вещества умещается в кубике со стороной 4 см.

Как работает счётчик Гейгера?

Вы, наверное слышали о том, что при поиске металлов геологам сегодня помогает счётчик Гейгера. Или, возможно, вы слышали об этом приборе, когда речь шла о Чернобыле или Фокусиме. В обоих случаях речь шла о радиации, или радиационном излучении. Некоторые радиоактивные элементы таблицы Менделеева способны «излучать лучи», которые легко определяются и измеряются с помощью счётчика Гейгера. Этот счётчик был изобретён Хансом Вильгельмом Гейгером в 1908 году, а потом в 1928-ом усовершенствован его последователем, учёным с фамилией Вальтером Мюллером. Отсюда это устройство в научно-технических кругах часто ещё называют и счётчиком Гейгера-Мюллера.

В эпоху разработки ядерного оружия и в процессе «холодной войны» в Советском Союзе была необходимость в разработке устройств для измерения и фиксации интенсивности процессов распада радиоактивных материалов. Было создано много счётчиков, которые отличались между собой габаритами, надёжностью, точностью. Маркировались они как: СТС-5, ДП-5А, ДП-5В. И лишь в начале 70-х годов прошлого столетия начали массово выпускаться счётчики Гейгера типа СБМ-20. Счётчик получился достаточно удачным и его можно встретить во множестве современных дозиметров от Есоtest, СОЭКС, Радэкс.

Принцип работы газоразрядного счетчика Гейгера

Счётчик представляет собой вакуумную трубку, которая может быть изготовлена из металла или стекла. Она устроена достаточно просто: внутри тонкой стеклянной пробирки находятся две пластины и небольшое количество газа, например аргона или неона. Трубки, наполненные газом, аналогично как неоновые трубки рекламы, что горят на рекламных вывесках. Газ в неоновой трубке или лампе дневного света начинает гореть, если её контакты присоединить к достаточно высокому напряжению. Большое напряжение осаждает газ и даёт возможность огромному потоку электронов двигаться между двумя пластинами, катодом и анодом. Когда возникает движение потока электронов, то газ внутри трубки начинает гореть ярким цветом.

А в счётчике Гейгера всё происходит наоборот. Напряжение должно быть маленьким, чтобы газ не начал гореть в естественных условиях. Теперь давайте представим, что произойдёт, если рядом поместить радиоактивное вещество. Её излучение проникает в трубку и начинает взаимодействовать с молекулами газа. От этого они получают энергию и принуждают газ загораться. Чтобы электрические разряды в трубке могли возникать при минимальных возмущениях — в счётчике Гейгера специально создаётся пониженное давление. Таким образом в момент столкновения заряженной частицы с высокой энергией с элементами конструкции счётчика Гейгера-Мюллера, то выбивается некоторое количество электронов, которые находятся между электродами, и под действием ускоряющего напряжения электроны, находящиеся в инертном газе начинают двигаться к аноду. Происходит лавинообразная ионизация газа, что приводит к появлению коронного разряда между анодом и катодом, возникает скачкообразный электрический ток. Если его пропустить через счётчик импульсов, то можно определить количество радиации, что попала в трубку. А ещё можно заставить этот ток издавать своеобразное цоканье, которое у нас обычно ассоциируется со счётчиком Гейгера.

Читайте так же:
Кто должен регистрировать уже установленные счетчики

Типы счётчиков Гейгера.

Для фиксации радиоактивных конструктивно можно выделить два типа счётчиков Гейгера: цилиндрические (СБМ-20 и аналоги) и торцевые (Бета 1-1 и другие). Первый счётчик способен фиксировать бета и гамма излучения, а второй, благодаря своей конструкции и возможности применения тонкой слюдяной пластины в качестве поверхности счётчика кроме упомянутых бета и гамма «видит» и альфа излучение. Счётчик Гейгера Бета 1-1 по стоимости намного дороже СБМ-20 и обычно используется в профессиональных средствах дозиметрического контроля. Кроме гамма-частиц они способны регистрировать мягкое бета излучение и альфа-частицы.

Для того, чтобы остановить процесс разряда в газовую среду счётчика обычно вводят добавки некоторых других добавок таких, как: бром, йод, хлор, спирт. Счётчики с внесёнными добавками называются » самогасящими«. Нагрузочный резистор, с которого снимаются импульсы обычно имеет огромное сопротивление, которое может достигать десятком мегаОм. Из за такого сопротивления происходит большое падение напряжения между анодом и катодом., что позволяет оборвать лавинообразность процесса. Но есть и » несамогасящиеся» счётчики Гейгера-Мюллера. Для того, чтобы прекратить лавинообразный поток электронов в них просто отключается питание через короткий промежуток времени, после возникновения разряда ионизирующих частиц. Счётчик Гейгера обычно подключают по схеме, которая приведена ниже.

Для чего нужен счётчик Гейгера-Мюллера

  • Обнаружение жесткого бета-излучения и гамма-фотонов
  • Регистрация фотонов рентгеновского и гамма-излучения.
  • Регистрация гамма и мягкого бета-излучения.
  • Регистрация альфа-частиц

Для регистрации гамма-фотонов, рентгеновского и жесткого бета-излучения вполне подойдёт счётчик СБМ-20 или другой трубчатый счётчик из этой серии. Счётчик выполнен из метала и имеет рабочую зону 8 см. кв. Он может регистрировать гамма-кванты с энергией от 0,05 МэВ до 3 МэВ. А также бета-частицы, которые имеют энергию с нижним пределом 0,3 МэВ. Для более точного измерения гамма-квантов при использовании счётчика Гейгера СБМ-20 необходимо применение свинцовой пластины для отсекания бета излучения. Этот принцип используется в дозиметрах украинского производства Терра МКС-05, Терра-П, Терра-П+ в которых конструктивно предусмотрен фильтр (крышечка) со свинцовой пластиной.

В случае необходимости измерить альфа-частички следует помнить, что они обладают слишком маленькой энергией и в некоторых случаях их можно регистрировать на расстоянии всего лишь 2мм. Для увеличения вероятности обнаружения и расстояния на котором можно зафиксировать альфа частицы правильно будет прибегнуть к использованию торцовых счётчиков Гейгера, у которых обычно площадь фиксации побольше, чем у трубчатых счётчиков. Одним из них есть Бета-1.

Таким образом мы видим, что счётчики Гейгера могут выполнять роль приёмного элемента для фиксации радиоактивных частиц в дозиметрах для рентген кабинета, атомной станции, досмотра автотранспорта и грузов на таможне, проверки металлолома, охранных фирм, банков а также для бытовых целей. Например для проверки продуктов питания или жилища. Для разных целей нужно выбирать дозиметр с подходящими параметрами счётчика Гейгера. Ведь только счетчики с подходящими параметрами смогут уберечь вас от воздействия губительных лучей радиации.

Чтобы подобрать дозиметр конкретно для ваших целей обращайтесь к консультантам нашего магазина.

Нейтронное излучение

Как следует из названия, данная категория радиации связана с выделением нейтронов. Происхождение лучей техногенное, радиация возникает при авариях, в ядерных реакторах, при атомных взрывах. Излучение обладает высокой проникающей способностью. Эффективную преграду могут составить материалы, содержащие водород, – вода, полиэтилен, графит.

Бета-радиация возникает в процессе распада ядер некоторых элементов, испускающих электроны или позитроны. Излучение характеризуется средней проникающей способностью и высокой скоростью. Вредное воздействие проявляется на расстоянии нескольких десятков метров от источника.

Бета-лучи применяются в медицинских целях:

  • в радиоизотопной диагностике;
  • для лечения злокачественных опухолей.

При попадании на кожные покровы лучи этой группы вызывают сильные ожоги. Проникновение частиц внутрь клеток в опасных дозах вызывает их разрушение, тяжелые заболевания, вплоть до смертельного исхода. Если измерения радиационного фона дают результаты 0,40 мкЗв/час, находиться в такой зоне без опасных последствий можно около 30 минут.

Гамма-излучение – это поток фотонов, распространяющийся со скоростью света, имеющий высокую проникающую способность и распространяющий свое действие на сотни метров от источника. Остановить их может препятствие в виде металлической или бетонной стены значительной толщины. Энергия высвобождается при распаде цезия и кобальта. Это единственный вид радиации, способный поразить человека на значительном расстоянии.

γ-излучение применяют в лучевой терапии, при консервировании пищевых продуктов, в космической отрасли.

α-радиация

Читайте также

После того, как закончилось строительство или реконструкция, объект необходимо ввести в эксплуатацию

Каждое предприятие общепита, а также все, выпускающие продукты питания, на своих производственных площадках должны внедрять систему контроля качества и безопасности по нормам ХАССП.

Устройство [ | ]

Дозиметр может включать в себя: [ источник не указан 1520 дней ]

  • один или несколько детекторов на разные типы излучения
  • съемные фильтры для оценки структуры излучения
  • систему индикации дозы
  • счётное устройство
  • контрольный источник ионизирующего излучения для калибровки детектора сцинтилляционного типа
Читайте так же:
Все марки счетчики молока

Примером может служить химический дозиметр ИД-11 (алюмофосфатное стекло, активированное серебром), регистрирующий воздействие гамма- и смешанного гамма-нейтронного излучения. Измерение зарегистрированной дозы производится с помощью измерительного устройства ИУ-1 (или ГО-32) в диапазоне от 10 до 1500 рад. Доза излучения суммируется при периодическом облучении и сохраняется в дозиметре в течение 12 месяцев. Масса ИД-11 равна 25 г. Масса ИУ-1 — 18 кг.

Детекторами ионизирующих излучений [12] (чувствительными элементами дозиметра, служащими для преобразования явлений, вызываемых ионизирующими излучениями в электрический или другой измеряемый сигнал) могут являться различные по устройству и принципам работы датчики:

  • Газоразрядные детекторы ионизирующих излучений
      (прямопоказывающий индивидуальный дозиметр «ДКС-101» или «ДДГ-01Д»
    • датчики Гейгера — Мюллера (например, «бета-1» для α,β,γ-излучения или «СБМ-20» для β,γ-излучения или СНМ-50 для нейтронного излучения)
    • Фотопленочные
    • Камерно-ионизационные
    • Термолюминесцентные
    • Радиофотолюминесцентные
    • Электретные
    • Трековые

    В СССР бытовые дозиметры получили наибольшее распространение после Чернобыльской аварии 1986 года. До этого времени дозиметры использовались только в научных или военных целях.

    Радиационная разведка — ДП-5

    Радиационная разведка — ДП-5

    Вследствие аварии на четвертом блоке Чернобыльской АЭС (ЧАЭС) произошло широкомасштабное загрязнение территории радиоактивными веществами, окружающей природной среды, различных поверхностей техники, оборудования, сооружений. В связи с чем значительно возросло воздействие ионизирующих излучений на людей.
    Важным этапом при реализации работ по оценке и ликвидации последствий разрушения ядерного энергоблока являлось своевременное обнаружение радиоактивного загрязнения местности и оценка степени опасности ионизирующих излучений для принятия решений об эвакуации населения, работы войск гражданской обороны и т.д.

    Основной целью дозиметрии в после аварийный период в зоне отчуждения ЧАЭС было:

    • выявление и определение степени опасности ионизирующих излучений для населения;
    • обнаружение и измерение мощности экспозиционной и поглощенной доз излучения для успешного проведения работ по минимизации последствий аварии, создания локализующей оболочки, дезактивационных работ и т.д.;
    • измерение активности радиоактивных веществ, уровня загрязнения, степени заражения гамма-излучением различных поверхностей объектов для определения необходимости и полноты проведения дезактивации и санитарной обработки, а также определения пригодности зараженных продуктов, воды к употреблению;
    • измерение экспозиционной и поглощенной доз облучения в целях определения жизнедеятельности населения в радиационном отношении;

    Одним из наиболее используемых приборов, который применялся войсками гражданской обороны для радиационной разведки и контроля степени радиационного загрязнения в зоне заражения ЧАЭС был измеритель мощности дозы ДП-5.
    Ниже представлено назначение, устройство и правила эксплуатации ДП-5, которым были оснащены формирования гражданской обороны.

    Особенности применения ДП-5 при радиационной разведке в зоне заражения ЧАЭС

    Дозиметры ДП-5 выдавались из расчета один прибор на группу (звено) 15 человек. ДП-5 выдавался командно-начальствующему составу, а также лицам, действующим в отрыве от своих формирований каждому по дозиметру.
    Контроль радиоактивного заражения проводился на площадках путем измерения степени заражения объектов по гамма-излучению с помощью измерителей мощности дозы ДП-5В. Из измеренного значения вычитался гамма-фон, предварительно замеренный на площадке при удалении от нее объектов измерения на расстояние более 15-20 м. Контроль радиоактивного заражения осуществлялся сплошным способом (когда проверяется 100 % людей и техники) и выборочным (когда проверяется некоторая их часть).
    На основании полученных результатов контроля определялся объем работ по санитарной обработке людей и обеззараживанию техники, транспорта, одежды, средств индивидуальной защиты, продовольствия, воды и других материальных средств, а также определялся порядок их использования в работах по ликвидации аварии в Чернобыльской зоне отчуждения.

    Назначение и устройство ДП-5

    Измерители мощности дозы ДП-5А (Б) и ДП-5В предназначены для измерения уровней радиации на местности и радиоактивной зараженности различных предметов по гамма-излучению. Мощность гамма-излучения определяется в миллирентгенах или рентгенах в час для той точки пространства, в которой помещен при измерениях соответствующий счетчик прибора. Кроме того, имеется возможность обнаружения бета излучения.

    ДП-5 дозиметр

    Внешний вид и схема укладки ДП-5В
    1 – прибор ДП-5В; 2 – блок детектирования; 3 – кабеля; 4 – штанга; 5 – телефоны.

    Диапазон измерений по гамма-излучению от 0,05 мР/ч до 200 Р/ч в диапазоне энергий гамма квантов от 0,084 до 1,25 Мэв. Приборы ДП-5А, ДП-5Б и ДП-5В имеют шесть поддиапазонов измерений . Отсчет показаний приборов производится по нижней шкале микроамперметра в Р/ч, по верхней шкале — в мР/ч с последующим умножением на соответствующий коэффициент поддиапазона. Участки шкалы от нуля до первой значащей цифры являются нерабочими. Приборы имеют звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов .
    Питание приборов осуществляется от трех сухих элементов типа КБ-1 (один из них для подсвета шкалы), которые обеспечивают непрерывность работы в нормальных условиях не менее 40 ч — ДП-5А и 55 ч — ДП-5В. Приборы могут подключаться к внешним источникам постоянного тока напряжением 3,6 и 12В — ДП-5А и 12 или 24В — ДП-5В, имея для этой цели колодку питания и делитель напряжения с кабелем длиной 10 м соответственно.

    Устройство приборов ДП-5А (Б) и ДП-5В. В комплект прибора входят:

    • футляр с ремнями;
    • удлинительная штанга; колодка питания к ДП-5А (Б) и делитель напряжения к ДП-5В;
    • комплект эксплуатационной документации и запасного имущества;
    • телефон и укладочный ящик.

    Дозиметр дп-5в инструкция

    Измеритель мощности дозы (рентгенметр) ДП-5В
    1 – телефоны; 2 – футляр с крышкой; 3 – тумблер подсвета шкалы микроамперметра; 4 – шкала микроамперметра; 5 – кнопка сброса показаний микроамперметра; 6 – переключатель диапазонов; 7 – гибкий кабель; 8 – блок детектирования; 9 – удлинительная штанга.

    Прибор состоит из измерительного пульта; зонда в ДП-5А (Б) или блока детектирования в ДП-5В /, соединенных с пультами гибкими кабелями; контрольного стронциевриттриевого источника бета излучений для проверки работоспособности приборов (с внутренней стороны крышки футляра у ДП-5А(Б) и на блоке детектирования у ДП-5В).
    Измерительный пульт состоит из панели и кожуха. На панели измерительного пульта размещены: микроамперметр с двумя измерительными шкалами; переключатель поддиапазонов; ручка «Режим» 6 (потенциометр регулировки режима); кнопка сброса показаний («Сброс»); тумблер подсвета шкалы; винт установки нуля; гнездо включения телефона . Панель крепится к кожуху двумя невыпадающими винтами. Элементы схемы прибора смонтированы на шасси, соединенном с панелью при помощи шарнира и винта. Внизу кожуха имеется отсек для размещения источников питания. При отсутствии элементов питания сюда может быть подключен делитель напряжения от источников постоянного тока. Воспринимающими устройствами приборов являются газоразрядные счетчики, установленные: в приборе ДП-5А — один (СИЗБГ) в измерительном
    пульте и два (СИЗБГ и СТС-5) в зонде; в приборе ДП-5В — два (СБМ-20 и СИЗБГ) в блоке детектирования.

    Детектор дозиметр дп-5 устройство

    Устройство блока детектирования
    1 – поворотный экран; 2 – окно; 3 – стальной корпус; 4 – опорные выступы; 5 – контрольный источник; 6 – гайка

    Зонд и блок детектирования представляет собой стальной цилиндрически корпус с окном для индикации бета излучения, заклеенным этилцеллюлозной водостойкой пленкой, через Которую проникают бета частицы. На Корпус надет металлический поворотный экран, который фиксируется в двух Положениях («Г» и «Б») на зонде и в трех положениях («Г», «Б» и «К») на блоке детектирования. В положении «Г» окно корпуса закрывается экраном и в счетчик могут проникать только гамма лучи. При повороте экрана в положение «Б» окно корпуса открывается и бета частицы проникают к счетчику. В положении «К» контрольный источник бета излучения, который укреплен в углублении на экране, устанавливается против окна и в этом положении проверяется работоспособность прибора ДП-5В.
    На корпусах зонда и блока детектирования имеются по два выступа, с помощью которых они устанавливаются на обследуемые поверхности при индикации бета зараженности. Внутри корпуса находится плата, на которой смонтированы газоразрядные счетчики, усилитель-нормализатор и электрическая схема.
    Футляр прибора состоит: ДП-5А — из двух отсеков (для установки пульта и зонда); ДП-5В — из трех отсеков (для размещения пульта, блока детектирования и запасных элементов питания). В крышке футляра имеются окна для наблюдения за показаниями прибора. Для ношения прибора к футляру присоединяются два ремня.
    Телефон состоит из двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к измерительному пульту и фиксирует наличие радиоактивных излучений: чем выше мощность излучений, тем чаще звуковые щелчки.
    Из запасных частей в комплект прибора входят чехлы для зонда, колпачки, лампочки накаливания, отвертка, винты.

    Порядок подготовки к измерениям прибора ДП-5

    Подготовка прибора к работе проводится в следующем порядке:

    • извлечь прибор из укладочного ящика, открыть крышку футляра, провести внешний осмотр, пристегнуть к футляру поясной и плечевой ремни;
    • вынуть зонд или блок детектирования; присоединить ручку к зонду, а к блоку детектирования — штангу (используемую как ручку);
    • установить корректором механический нуль на шкале микроамперметра;
    • подключить источники питания;
    • включить прибор, поставив ручки переключателей поддиапазонов в положение: «Реж.» ДП-5А и «А» (контроль режима) ДП-5В (стрелка прибора должна установиться в режимном секторе);
    • в ДП-5А с помощью ручки потенциометра стрелку прибора установить в режимном секторе на «Т». Если стрелки микроамперметров не входят в режимные сектора, необходимо заменить источники питания.

    Проверку работоспособности приборов проводят на всех поддиапазонах, кроме первого («200»), с помощью контрольных источников, для чего экраны зонда и блока детектирования устанавливают в положениях «Б» и «К» соответственно и подключают телефоны. В приборе ДП-5А открывают контрольный бета-источник, устанавливают зонд опорными выступами на крышку футляра так, чтобы источник находился против открытого окна зонда. Затем, переводя последовательно переключатель поддиапазонов в положения «X 1000» ,«Х 100», «X 10», «X 1» и «X 0,1», наблюдают за показаниями прибора и прослушивают щелчки в телефонах. Стрелки микроамперметров должны зашкаливать на VI и V поддиапазонах, отклоняться на IV, а на III и II могут не отклоняться из-за недостаточной активности контрольных бета источников. После этого ручки переключателей поставить в положение «Выкл.» ДП-5А и «А» — ДП-5В; нажать кнопки «Сброс»; повернуть экраны в положение «Г». Приборы готовы к работе.

    Радиационная разведка местности

    Радиационную разведку местности, с уровнями радиации от 0,5 до 5 Р/ч, производят на втором поддиапазоне (зонд и блок детектирования с экраном в положении «Г» остаются в кожухах приборов), а свыше 5 Р/ч — на первом поддиапазоне. При измерении прибор должен находиться на высоте 0,7—1 м от поверхности земли.
    Степень радиоактивного заражения кожных покровов людей, их одежды, сельскохозяйственных животных, техники, оборудования, транспорта и т. п. определяется в такой последовательности. Измеряют гамма-фон в месте, где будет определяться степень заражения объекта, но не менее 15—20 м от обследуемого объекта. Затем зонд (блок детектирования) упорами вперед подносят к поверхности объекта на расстояние 1,5—2 см и медленно перемещают над поверхностью объекта (экран зонда в положении «Г»). Из максимальной мощности экспозиционной дозы, измеренной на поверхности объекта, вычитают гамма-фон. Результат будет характеризовать степень радиоактивного заражения объекта.
    Для определения наличия наведенной активности техники, подвергшейся воздействию нейтронного излучения, производят два измерения — снаружи и внутри техники. Если результаты измерений близки между собой, это означает, что техника имеет наведенную активность.
    Для обнаружения бета излучений необходимо установить экран зонда в положении «Б», поднести к обследуемой поверхности на расстояние 1,5—2 см. Ручку переключателя поддиапазонов последовательно поставить в положения «X 0,1», «X 1», «X 10» до получения отклонения стрелки микроамперметра в пределах шкалы. Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с гамма измерением показывает наличие бета излучения.
    Если надо выяснить, с какой стороны заражена поверхность брезентовых тентов, стен и перегородок сооружений и других прозрачных для гамма-излучений объектов, то производят два замера в положении зонда «Б» и «Г». Поверхность заряжена с той стороны, с которой показания прибора в положении зонда «Б» заметно выше.
    При определении степени радиоактивного заражения воды отбирают две пробы общим объемом 1,5—10 л. Одну — из верхнего слоя водоисточника, другую — с придонного слоя. Измерения производят зондом в положении «Б», располагая его на расстоянии 0,5-1 см от поверхности воды, и снимают показания по верхней шкале.
    На шильниках крышек футляра даны сведения о допустимых норм радиоактивного заражения и указаны поддиапазоны, на которых они измеряются.

    Виды счетчика Гейгера

    Устройства представлены в двух вариантах:

    • Цилиндрические. Этот вид производится с использованием металлической гофрированной трубки с тонкими стенками. Рифленая поверхность придает гильзе дополнительный показатель жесткости, чтобы она была максимально устойчива к атмосферному давлению и не деформировалась. Торцы трубки оборудуются изоляторами для создания герметичности. Они сделаны из стекла и пластмассы термореактивного вида. На них расположены выводы для подключения плат прибора. Такой счетчик Гейгера-Мюллера применяется для регистрации как бета, так и гамма лучей.
    • Торцевые или плоские. Этот вид устройства регистрирует еще и на альфа излучение, которое отличается меньшей проходимостью частиц. Конструкция корпуса плоская. В нем есть окно из слюды, обеспечивающее лучшую проходимость частиц.

    Торцевая модель

    Счетчиками Гейгера можно просто и быстро найти источник ионизированного излучения и внутри помещений, и на открытой местности. Это довольно дешевые, но надежные и эффективные датчики, поэтому широко используются в таких приборах, как дозиметры. С их помощью можно проверить на радиацию:

    • стройматериалы:
    • одежду;
    • технику;
    • мебель;
    • продукты питания.

    Дозиметр

    На источник излучения изредка можно наткнуться

    Возможно, эти мифы живучи потому, что облучиться можно не только рядом со сломавшимся ядерным реактором или в кабинете врача. Источники излучения иногда забывали в списанных приборах для поиска скрытых дефектов, были зафиксированы случаи потери медицинских источников, а несколько лет назад школьник из Москвы купил на радиорынке рентгеновскую трубку, подключил ее дома и заработал лучевой ожог руки. В Южной Америке случилась еще более вопиющая история. В больнице был потерян светящийся радиоактивный порошок, который местные дети нашли и использовали в качестве грима. Вечеринка закончилась грустно.

    Чтобы такого избежать, нужно просто не тащить в дом неизвестные предметы и не разбирать их на части. В конце концов, что такого необходимого для хозяйства можно найти в подвале больницы? А если вы считаете себя опытным исследователем заброшенных пространств, то наверняка слышали, что приличный сталкер оставляет после себя объект в том же виде, в котором застал.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector