Teres-1t.ru

Инженерные решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контрольная работа по физике Работа и мощность тока 8 класс

1. Определите мощность тока в электрической лампе, включенной в сеть напряжением 220 В, если известно, что сопротивление нити накала лампы 1936 Ом. Какой силы ток течет по нити накала?

2. Чему равна работа, совершенная электрическим током за 50 с в резисторе, рассчитанном на напряжение 24 В? Сила тока в резисторе 2 А.

3. Какое количество теплоты выделится в проводнике сопротивлением 500 Ом за 10 с, если его включили в сеть с напряжением 220 В?

4. Рассчитайте сопротивление электрической плитки, если она при силе тока 4 А за 20 мин потребляет 800 кДж энергии.

5. Определите мощность, потребляемую первой лампой (рис. 125), если амперметр показывает 2 А.

Рисунок 125

6. За какое время на электроплитке можно нагреть до кипения 1 кг воды, взятой при температуре 20 °С, если при напряжении 220 В сила тока в ней 5 А? Потерями энергии пренебречь.

Электродвижущая сила

При подключении к полюсам источника проводник, благодаря наличию разности потенциалов, свободные электроны проводимости, не прекращая хаотического движения, под действием кулоновских сил начнут двигаться направлено — от конца проводника с более низким потенциалом к концу с высшим, то есть от отрицательного полюса источника тока к положительному. Но силы электрического поля не могут переместить электрические заряды между полюсами внутри источника, поскольку действуют на них в противоположном направлении. Поэтому внутри источника, кроме электрических сил F кл , действуют еще и сторонние силы F ст. Природа сторонних сил может быть различной: в химических элементах — это действие химических реакций, в фотоэлементах — действие солнечных лучей, электрогенераторах — изменение магнитного потока.

Движение носителей заряда в полной электрической цепи

Сторонние силы перемещают отрицательные заряды от положительного полюса батареи к отрицательному и противодействуют электрическим силам, которые стремятся выровнять потенциалы на полюсах. Благодаря этому заряды циркулируют по замкнутому кругу, создавая ток. Участок круга, в которой заряды движутся под действием кулоновских сил, называют однородной, а ту, в которой носители заряда движутся под действием как кулоновских, так и сторонних сил, — неоднородной. Если соединить концы неоднородного участка, получим полный круг, в котором ту часть замкнутого круга, в которой заряды движутся под действием кулоновских сил (электростатической разности потенциалов), называют внешней, а ту, в которой носители заряда движутся под действием сторонних сил, — внутренней. Полюса источника тока разделяют внутренний и внешний участки цепи.

Электрическая цепь: а — однородный участок;
б — неоднородный участок; в — полный круг, содержащий внешнюю и внутреннюю части

Для перемещения зарядов сторонние силы выполняют соответствующую работу А. Чем больше заряд перемещается, тем больше работа выполняется. Иными словами, A ст

q или, используя знак равенства, A ст = εq, где ε — постоянный коэффициент пропорциональности, характеризующий соответствующий источник и называеющийся электродвижущей силой источника тока (сокращенно ЭДС).

Читайте так же:
Что такое номинальный ток теплового расцепителя

Электродвижущая сила ε — это физическая величина, характеризующий энергию стороних сил источника тока и измеряется: работой сторонних сил (то есть сил не электростатического происхождения), выполненной для перемещения единичного позитивного электрического заряда, ε = A ст/q.

Единица электродвижущей силы — вольт, 1 В = 1 Дж/ 1Кл.

В результате разделения внутри источника положительных и отрицательных зарядов, источник приобретает запас потенциальной электрической энергии, которая тратится на выполнение работы по перемещению зарядов по всей окружности. Работа сторонних сил равна сумме работ, выполняемых по перемещению заряда на внутренней и внешней участках цепи.

В источниках тока постоянно происходит разделение положительных и отрицательных зарядов, которые сосредотачиваются на его полюсах, что вызывает появление электрического поля (стационарного). Свойства этого поля отличаются от электрического поля неподвижных зарядов, которое мы изучали в электростатике. В таблице 2 представлены сравнения свойств электрических полей подвижных и неподвижных зарядов.

Работа поля по замкнутому контуру равна нулю

Имеет замкнутые линии напряженности.

Работа поля по перемещению заряда вдоль замкнутой линии напряженности не равна нулю.

Такое поле называют вихревым

Формула вычисления

В 1841 году английский ученый Джеймс Джоуль сформулировал закон для нахождения количественной меры теплового воздействия электрического тока. В 1842 году этот же закон был также открыт русским физиком Эмилием Ленцем. Из-за этого он получил двойное название закона Джоуля-Ленца. В общем виде закон записывается следующим образом: Q = I² • R • t.

Он имеет достаточно обобщенный характер, так как не имеет зависимости от природных сил, генерирующих ток. Сегодня этот закон активно применяется в быту. Например, для определения степени нагрева вольфрамовой нити, используемой в лампочках.

Закон Джоуля-Ленца

Закон Джоуля-Ленца определяет количество теплоты, выделяемое током. Но, тем не менее, это поможет узнать, по каким формулам вычисляется работа электрического поля. Всё потому, что она впоследствии проявляется в виде нагревания проводника. Это говорит о том, что работа тока равна теплоте нагревания проводника (A=Q). Работа эл тока, формула: А= I² • R • t. Это не единственная формула для нахождения работы. Если использовать закон Ома для участка цепи (I=U:R), то можно вывести еще две формулы: А=I•U•t или A=U²:R.

Портреты Джоуля и Ленца

Общая формула для того, чтобы вычислять мощность, заключается в ее прямой пропорциональности работе и обратной зависимости от времени (P=A:t). Если говорить о мощности в электрическом поле, то исходя из предыдущих формул, можно составить целых три: Р= I² • R; Р=I•U; Р=U²:R.

Закон Ома для участка цепи

Мощность переменного тока

Закон Ома в той форме, как он был сформулирован ваше (I=U/R), справедлив только для цепей постоянного тока. Следовательно и формула мощности тока P=I*U, тоже действует только для цепей постоянного тока. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Читайте так же:
Как преобразовать тепло в электрический ток

Мощность в цепи переменного тока выражается комплексным числом вида P+i*Q. При этом его действительная часть называется активной мощностью, мнимая часть реактивной мощностью.

Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока

Единицей измерения активной мощности является по прежнему ватт, а единицей измерения реактивной мощности — вольт-ампер реактивный (VAr, ВАр, вар).

Но практическое значение имеет полная мощность, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии.

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S=U*I; связана с активной и реактивной мощностями соотношением: S = sqrt [P 2 + Q 2 ], где P — активная мощность, Q — реактивная мощность, sqrt — символ квадратного корня.

Единица полной электрической мощности — вольт-ампер (V·A, В·А).

  • Вспоминаем физику: теплотаВспоминаем физику: теплота
  • Вспоминаем физику: работа, энергия и мощностьВспоминаем физику: работа, энергия и мощность
  • Аккумулирование электрической энергииАккумулирование электрической энергии
  • Где школьнику можно готовиться к сдаче экзаменов

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω). В формулах и расчетах сопротивление обозначается буквой R. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

Электрическое сопротивление на примере водопроводной трубы

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

Определения и формулы

Этот калькулятор используется для расчета мощности постоянного тока и всё, о чем тут говорится, относится, в основном, к постоянному току. Намного более сложный случай расчета мощности в цепях переменного тока рассматривается в нашем Калькуляторе мощности переменного тока. См. также Калькулятор пересчета ВА в ватты.

Электрический разряд

Линия электропередачи — пример устройства для передачи энергии от места, где она вырабатывается, до места, где она потребляется.

Электрический заряд или количество электричества — скалярная физическая величина, определяющая способность тел создавать электромагнитные поля и принимать участие в электромагнитном взаимодействии. На электрически заряженное тело, помещенное в электромагнитное поле, действует сила, при этом заряды противоположного знака притягиваются друг к другу, а одноименные заряды — отталкиваются.

Читайте так же:
Назовите действия электрического тока а тепловое магнитное химическое

Единицей измерения электрического заряда в системе СИ является кулон, равный заряду, проходящему через поперечное сечение проводника с током один ампер в течение одной секунды. Несмотря на то, что мы наблюдаем перемещение зарядов в любой электрической схеме, количество заряда не изменяется, так как электроны не создаются и не разрушаются. Электрический заряд в движении представляет собой электрический ток, рассматриваемый ниже. При перемещении заряда из одного места в другое мы осуществляем передачу электрической энергии.

Сила тока

Сила тока — физическая величина, представляющая собой скорость перемещения заряженных частиц или носителей заряда (электронов, ионов или дырок) через некоторое сечение проводящего материала, который может быть металлом (например, проводом), электролитом (например, нейроном) или полупроводником (например транзистором). Если говорить более конкретно, это скорость потока электронов, например в схеме, показанной на рисунке выше.

В системе СИ единицей измерения силы тока является ампер (символ А). Один ампер — это ток, возникающий при движении заряженных частиц со скоростью один кулон в секунду. Обозначается электрический ток символом I и происходит от французского intensité du courant («интенсивность тока»).

Электрический ток может протекать в любом направлении — от отрицательной к положительной клемме электрической схемы и наоборот, в зависимости от типа заряженных частиц. Положительные частицы (положительные ионы в электролитах или дырки в полупроводниках) движутся от положительного потенциала к отрицательному и это направление произвольно принято за направление электрического тока. Такое направление можно рассматривать как движение заряженных частиц от более высокого потенциала к более низкому потенциалу или более высокой энергии к более низкой энергии. Это определение направления электрического тока сложилось исторически и стало популярным до того, как стало понятно, что электрический ток в проводах определяется движением отрицательных зарядов.

Такое произвольно принятое направление электрического тока можно также использовать для объяснения электрических явлений с помощью гидравлической аналогии. Мы понимаем, что вода движется из точки с более высоким давлением в точку с более низким давлением. Между точками с одинаковыми давлениями потока воды быть не может. Поведение электрического тока аналогично — он движется от точки с более высоким электрическим потенциалом (положительной клеммы) к точке с более низким потенциалом (отрицательной клемме).

Труба с водой ведет себя как проводник, а вода в ней — как электрический ток. Давление в трубе можно сравнить с электрическим потенциалом. Мы также можем сравнить основные элементы электрических схем с их гидравлическими аналогами: резистор эквивалентен сужению в трубе (например, из-за застрявших там волос), конденсатор можно сравнить с установленной в трубе гибкой диафрагмой. Катушку индуктивности можно сравнить с тяжелой турбиной, помещенной в поток воды, а диод можно сравнить с шариковым обратным клапаном, который позволяет потоку жидкости двигаться только в одном направлении.

Читайте так же:
Провод какого сечения использовать для теплого пола

В системе СИ сила тока измеряется в амперах (А) и названа в честь французского физика Андре Ампера. Ампер — одна из семи основных единиц СИ. В мае 2019 г. было принято новое определение ампера, основанное на использовании фундаментальных физических констант. Ампер также можно определить как один кулон заряда, проходящий через определенную поверхность в одну секунду.

Подробную информацию об электрическом токе можно найти в наших конвертерах Электрический ток и Линейная плотность тока.

Скорость передачи заряда можно изменять, и эта возможность используется для передачи информации. Все системы передачи связи, такие как радио (конечно, сюда относятся и смартфоны) и телевидение, основаны на этом принципе.

Электрическое напряжение

Электрическое напряжение или разность потенциалов в статическом электрическом поле можно определить как меру работы, требуемой для перемещения заряда между выводами элемента электрической схемы. Элементом может быть, например, лампа, резистор, катушка индуктивности или конденсатор. Напряжение может существовать между двумя выводами элемента независимо от того протекает между ними ток или нет. Например, у 9-вольтовой батарейки имеется напряжение между клеммами даже если к ней ничего не присоединено и ток не протекает.

Единицей напряжения в СИ является вольт, равный одному джоулю работы по переносу одного кулона заряда. Вольт назван в честь итальянского физика Алессандро Вольта.

В Северной Америке для обозначения напряжения обычно используется буква V, что не слишком удобно. Фактически, это так же неудобно, как и использование футов и дюймов. Сравните, например, V = 5 V or U = 5 V. Что бы вы выбрали? Во многих других странах, считают, что для обозначения напряжения лучше использовать букву U — потому что так удобнее. В немецких, французских и русских учебниках используется U. Считается, что эта буква происходит от немецкого слова Unterschied, означающего разницу или разность (напряжение — разность потенциалов).

Мы знаем, что энергия, которая была использована для перемещения заряда через элемент схемы, не может исчезнуть и должна где-то появиться в той или иной форме. Это называется принципом сохранения энергии.

Например, если этим элементом был конденсатор или аккумулятор, то энергия будет храниться в форме электрической энергии, готовой для немедленного использования. Если же этот элемент был, например, нагревательным элементом в духовке, то электроэнергия была преобразована в тепловую. В громкоговорителе электрическая энергия преобразуется в акустическую, то есть механическую энергию, и тепловую энергию. Практически вся энергия, которую потребляет работающий компьютер, превращается в тепло, которое нагревает помещение, в котором он находится.

Теперь рассмотрим электрический элемент в форме автомобильной аккумуляторной батареи, подключенной к генератору для зарядки. В этом случае энергия подается в элемент. Если же двигатель не работает, но работает акустическая система автомобиля, то энергия подается самим элементом (батареей). Если ток входит в одну из двух клемм аккумулятора и внешний источник тока (в нашем случае — генератор) должен расходовать энергию, чтобы получить этот ток, то такая клемма называется положительной по отношению к другой клемме аккумулятора, которая называется отрицательной. Отметим, что эти знаки «плюс» и «минус» выбраны условно и позволяют нам обозначить напряжение, существующее между двумя клеммами.

Читайте так же:
Тепловое действие тока закон джоуля ленца примеры использования

USB тестер с соединителями типа USB-C, подключенный к зарядному устройству и смартфону (см. Пример 2 выше)

На рисунке выше показан рассмотренный в Примере 2 USB тестер с соединителями USB Type C, подключенный к зарядному устройству USB (слева). Справа к тестеру подключен заряжаемый смартфон. Тестер измеряет потребляемый смартфоном ток. Красной стрелкой на тестере показано текущее направление тока. Иными словами, на дисплее тестера показано, что нагрузка (смартфон) подключена к правому порту и заряжается. Отметим, что если вместо зарядного устройства к левому порту подключить какое-нибудь USB-устройство, например, флэш-накопитель (флэшку), то данный тестер покажет обратное направление движения тока и потребляемый флэшкой ток.

Электрическое сопротивление

Электрическое сопротивление — физическая величина, характеризующая свойство тел препятствовать прохождению электрического тока. Оно равно отношению напряжения на выводах элемента к протекающему через него току:

Эта формула называется законом Ома. Многие проводящие материалы имеют постоянную величину сопротивления R, поэтому U и I связаны прямой пропорциональной зависимостью. Сопротивление материалов определяется, в основном, двумя свойствами: самим материалом и его формой и размерами. Например, электроны могут свободно двигаться через золотой или серебряный проводник и не так легко через стальной проводник. Они совсем не могут двигаться по изоляторам любой формы. Конечно, и другие факторы влияют на сопротивление, однако в значительной меньшей мере. Такими факторами являются, например, температура, чистота проводящего материала, механическое напряжение проводящего материала (используется в тензорезистивных датчиках) и его освещение (используется в фоторезисторах).

Электрическая мощность

Мощность представляет собой скалярную физическую величину, равную скорости изменения, передачи или потребления энергии в физической системе. В электродинамике мощность — физическая величина, характеризующая скорость передачи, преобразования или потребления электрической энергии. В системе СИ единицей электрической мощности является ватт (Вт), определяемый как 1 джоуль в секунду. Скорость передачи электрической энергии равна одному ватту, если один джоуль энергии расходуется на перемещение одного кулона заряда в течение одной секунды.

Более подробную информацию о мощности вы найдете в нашем Конвертере единиц мощности.

Расчет электрической мощности на постоянном токе

Мощность, необходимая для перемещения определенного числа кулонов в секунду (то есть для создания тока I в амперах) через элемент схемы с разностью потенциалов U пропорциональна току и напряжению, то есть

В правой части этого уравнения находится произведение джоулей на кулоны (напряжение в вольтах) на кулоны в секунду (ток в амперах), в результате получаются джоули в секунду, как и ожидалось. Это уравнение определяет мощность, поглощенную в нагрузке, выраженную через напряжение на выводах нагрузки и протекающий через нее ток. Это уравнение используется в нашем калькуляторе вместе с уравнением закона Ома.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector