Teres-1t.ru

Инженерные решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы электросчетчика

По принципу работы счетного механизма эти устройства бывают трех типов:

  1. Механические – в их основе шестеренчатый редуктор, который приводит в движение тот самый загадочный вращающийся диск.
  2. Электронные – подсчет ведет генератор импульсов, результаты отображаются на жидкокристаллическом дисплее.
  3. Гибридные – генератор импульсов работает в паре с шаговым электродвигателем, аналогичным тем, что работают в кварцевых часах. Результаты выдаются тем же способом, что и у механических приборов – цифрами на разрядных кольцах, приводимых в движение шестеренчатым редуктором.

Виды электросчетчиков

Самое интересное в том, что принцип работы электросчетчика основан на одном и том же явлении – электромагнитной индукции.

Разработка универсального счетчика импульсов

В производстве и на конвейерных линиях часто возникает задача подсчета продукции или операций оборудования. Во многих случаях станки уже имеют комплекс аппаратных и программных средств, позволяющих получить данную информацию. Также существуют специализированные счетчики, адаптированные под конкретную задачу или оборудование. Но при наличии разнотипного оборудования затраты на программное сопряжение становятся существенными. Хотелось бы иметь простой универсальный счетчик, который легко адаптируется под разные задачи и передает события на сервер для дальнейшей аналитики. Об опыте разработке такого счетчика и пойдет речь в данной статье.

Оптические датчики и их особенности

Чаще всего при подсчете продукции или отслеживании механического перемещения внешним датчиком используются оптические датчики барьерного, рефлекторного или диффузионного типа.

Рисунок 1. Типы датчиков (И - источник, П - приемник, О - объект).

Рисунок 1. Типы датчиков (И — источник, П — приемник, О — объект).

Принцип работы барьерного датчика очень простой — имеются разнесенные в пространстве источник света и приемник, между ними проходят объекты, тем самым закрывая источник света от приемника. Полученный сигнал с фотоприемника коррелирует с прохождением объекта и практически не требует обработки. Однако системы с таким датчиком не лишены недостатков — обычно это несколько модулей, требуется прокладка кабелей и юстировка оптической системы. В случае рефлекторного и диффузионного типа датчиков установка проще, так как источник и приемник находятся в одном корпусе. Рефлекторный датчик принимает отраженный от объекта или специальной отражающей метки свет, а диффузионный — рассеянный, учитывая при этом его интенсивность. Но для датчиков этих типов полученный сигнал требует дальнейшей обработки. Вне зависимости от выбранного типа датчика, для счета обычно используется независимый микрокомпьютерный или микропроцессорный блок как отдельное устройство.

Первый прототип датчика

Так как нам хотелось бы иметь устройство в едином корпусе, максимально адаптируемое под разные задачи, было решено: во-первых, использовать датчик работающий на отражение, во-вторых, реализовать блок подсчета на встроенном компьютере.

За отправную точку было решено взять аналоговую часть универсального тахометра, который работает на отраженном свете. В этом случае на движущийся механизм (например, вал) крепится яркая светоотражающая метка, наводится луч света, и прибор показывает частоту вращения. Источником света может выступать как лазер, так и обычный светодиод. В первом прототипе нашего счетчика импульсов за источник света был взят светодиод, использовалась линза с фокусным расстоянием 35 мм. На одном операционном усилителе был собран компаратор, на другом буферный элемент. Также была собрана цепочка, обеспечивающая плавающий порог срабатывания компаратора.

Читайте так же:
Как построить суммирующий счетчик

Рисунок 2. Первый прототип датчика - принципиальная схема.

Рисунок 2. Первый прототип датчика — принципиальная схема.

Испытания показали работоспособность в диапазоне 10-30 см с очень контрастными метками (использовали световозвращающий скотч). Но такой результат нас еще не устраивает, так так датчик на просвет работает на значительно больших расстояниях. Также система оказалась чувствительна к включению/выключению освещения в помещении, и при использовании подобного подхода от этого недостатка избавиться не получится.

Второй прототип датчика

В следующей версии для улучшения чувствительности и расстояния срабатывания датчика добавили гистерезис, настраиваемый с помощью подстроечного резистора. Остальные элементы были подобраны эмпирически в предыдущих опытах.

Рисунок 3. Второй прототип датчика - принципиальная схема.

Рисунок 3. Второй прототип датчика — принципиальная схема.

Второй прототип работал лучше предыдущего — увеличилось расстояние срабатывания и снизились требования к отражающим характеристикам меток. Однако все еще имеется ряд проблем. Во-первых, на низкой скорости движения объектов был замечен пропуск импульсов. Это связано с тем, что схема плавающего порога успевала подстроиться под изменения. Во-вторых, при глянцевой поверхности объекта счетчик давал много ложных срабатываний, так как не хватало гистерезиса. Но поднимать гистерезис бесконечно нельзя, система просто перестанет реагировать на обычные метки. И в-третьих, что самое печальное, в некоторых случаях счетчик ловил пульсацию бюджетного освещения в производственных помещениях.

Третий прототип датчика

В результате проведенных опытов стало понятно, что нельзя обойтись без дополнительной настройки системы, которую можно осуществить только с помощью микроконтроллера. Также для исключения влияния помех от фонового освещения решили добавить модуляцию опорного сигнала и преобразование Фурье на приемнике. Корпус уже был разработан и изготовлен на предыдущих этапах, и нам хотелось вписаться в его габариты. Так выбор пал на практически единственный вариант — STM32G030J6M6 Cortex — M0+ c ADC 2.5Msps в корпусе SOIC-8. Отличное решение для непрерывной обработки данных от АЦП. Общение с микроконтроллером осуществляется по шине I2C.

Рисунок 4. Третий прототип датчика - принципиальная схема.

Рисунок 4. Третий прототип датчика — принципиальная схема.

На операционном усилителе собран трансимпедансный усилитель тока фотодиода. Лазер модулируется дискретным сигналом от таймера, потому что в данном случае нет необходимости получать чистый синус. Для совместимости с предыдущими решениями был сделан дискретный вывод для использования аппаратного счетчика событий (1й пин разъема P1), а конфигурация осуществляется один раз при старте системы. Таким образом, сохраняется полная преемственность с уже написанным ПО.

В микроконтроллере реализованы генерация сигнала ШИМ, обработка оцифрованных данных и общение по I2C. За генерацию ШИМ отвечает таймер, синхронизированный с АЦП. Данные передаются в память по DMA и обрабатываются по половинам — пока заполняется первая половина буфера, вторая анализируется. Сам алгоритм обработки данных получится следующий:

Рисунок 5. Алгоритм обработки данных

Рисунок 5. Алгоритм обработки данных

Микрокомпьютер

С оптическим датчиком разобрались, теперь вернемся к самому устройству. Помимо датчика, нам также нужно реализовать подсчет импульсов и отправку данных на сервер для дальнейшей аналитики. Со всем этим справится одноплатный компьютер. Основные требования к нему следующие:

возможность запускать программу на Python 3,

Читайте так же:
Водомерный узел со счетчиком ду32

место для пары сетевых библиотек,

интерфейсы Ethernet и Wi-Fi для связи с сервером,

питание по micro USB или PoE,

производительность — не критично,

время включения — не более 2 минут,

хранилище данных не требуется, так как мы хотим передавать их на сервер, и буфера в оперативной памяти будет достаточно.

Сначала мы использовали Orange Pi zero, однако, учитывая их немалые габариты и невозможность нормально сделать PoE, решено было поискать другие варианты. Так взгляд пал на одноплатный компьютер VoCore, характеристики которого полностью подходили под задачу. Изучив предложения на китайском рынке, был найден очень похожий вариант выпускаемый массово — процессор RT5350, 32Mb RAM, 8/16Mb Flash.

Рисунок 6. Одноплатный компьютер VoCore.

Рисунок 6. Одноплатный компьютер VoCore.

Он немного больше, чем оригинальный VoCore, зато под модулем остается место для размещения компонентов, а также у модуля есть удобный разъем для подключения к основной плате. Схематика незначительно отличается от оригинального VoCore, так что конфигурацию от VoCore можно легко адаптировать под китайского товарища.

Конструктив

Рисунок 7. 3Д модель счетчика.

Рисунок 7. 3Д модель счетчика.

Для удобство калибровки системы было решено дать одну степень свободы оптическому датчику, разместив его в отдельной поворотной голове.

Рисунок 8. Поворотная часть корпуса.

Рисунок 8. Поворотная часть корпуса.

От люфта и случайного поворота защищает пружина и фрикционная шайба. Для большинства задач этого оказывалось достаточно. Материнская плата, модуль PoE и сам компьютер расположены максимально компактно в основной части корпуса.

Рисунок 9. Основная часть корпуса.

Рисунок 9. Основная часть корпуса.

Так как партии пока относительно небольшие корпус изготавливается методом SLS печати.

Итак, в итоге у нас получилась следующая архитектура устройства:

вычислительный модуль (одноплатный компьютер),

основная плата, на которой расположены разъемы Ethernet, USB, I2C, светодиоды и кнопка,

плата питания (устройство может питаться как от microUSB так и от PoE).

Подсчет срабатываний

Теперь пара слов о том, как реализован подсчет срабатываний датчика. Независимо от типа датчика, алгоритм подсчета импульсов остается одинаковым. Выход датчика подключается к GPIO процессора. Количество импульсов подсчитывалось через GPIO interrupt. Для этого требуется настроить GPIO на вход и включить прерывания. Об этом хорошо написано, например, тут. Число срабатываний можно посмотреть командой cat /proc/interrupts | grep gpiolib. Если же требуется реагировать на каждое событие или записывать время его срабатывания, то уже придется написать простую программу. Данный подход хорошо себя зарекомендовал и является необходимым и достаточным источником данных для подобного класса датчиков. В случае датчика с микроконтроллером, нужно перед началом работы загрузить необходимые параметры по I2C.

Заключение

Итак, что мы имеем на выходе? Компактное устройство для подсчета импульсов с оптическим датчиком и готовой реализацией отправки данных на сервер по Ethernet или WiFi. Была реализована передача данных по MQTT. Адаптивная архитектура также позволяет легко подключать практически любой другой датчик по I2C или SPI через переходник. На данный момент имеются такие варианты счетчиков: лазерный с аналоговой обработкой сигналов, лазерный с цифровой обработкой сигналов, а также индукционный счетчик для подключения внешнего промышленного индукционного датчика. Разработанный корпус позволил осуществлять поворот оптического модуля, а также его замену на другой тип датчика. В ближайших планах хотим подключить тепловизионный датчик для мониторинга нагруженных узлов в производстве.

Читайте так же:
Счетчик ватт часов сэб 2а 07

Электронные счетчики и перспективы развития

В настоящее время развитие электронных счётчиков идёт в основном в плане добавление «наворотов», различные производители добавляют всё новые функции, например, некоторые устройства могут вести контроль состояния питающей сети с передачей этой информации в диспетчерские центры и т.д.

Довольно часто в электросчётчик вводят функцию ограничения мощности. В этом случае, при превышении потребляемой мощности, электросчётчик отключает потребителя от сети. Для управления подачей напряжения, внутрь электросчётчика устанавливают контактор на соответствующий ток. Так же отключение возможно, если потребитель превысил отведённый ему лимит электроэнергии или же закончилась предоплата за электроэнергию. Кстати, некоторые электросчётчики позволяют пополнить денежный баланс прямо через встроенные в них считыватели пластиковых карт. К электросчётчикам данной группы относятся СТК-1-10 и СТК-3-10.

3. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1. При проведении поверки счетчиков импульсов необходимо соблюдать следующие условия:

температура окружающего воздуха помещения, в котором проводят поверку, должна быть 20±5 °С; относительная влажность воздуха 65±15%;

напряжение питания сети 220 В ±10%;

атмосферное давление должно быть 100000±4000 Па (750 ±30 мм рт.ст.).

3.2. Счетчик импульсов, представленный на поверку, должен быть укомплектован (кроме ЗИП), технической документацией (техническим описанием с инструкцией по эксплуатации, паспортом или выпускным аттестатом), утвержденным в установленном порядке. В паспорте (формуляре) должны быть указаны нормы поверяемых параметров.

3.3. При проведении поверки необходимо соблюдать требования, указанные в технической документации на поверяемый счетчик и средства измерений, используемые при поверке.

Форум АСУТП

Nisyboy здесь недавно
здесь недавноСообщения: 26 Зарегистрирован: 04 ноя 2019, 18:36 Имя: Алексей Страна: Россия город/регион: Курская область Благодарил (а): 9 раз Поблагодарили: 1 раз

Счетчик импульсов для расходомера

  • Цитата

Сообщение Nisyboy » 29 июн 2020, 13:12

dtv частый гость
частый гостьСообщения: 456 Зарегистрирован: 04 фев 2014, 07:41 Имя: Тарас Валерьевич Страна: Россия город/регион: Екатеринбург Благодарил (а): 43 раза Поблагодарили: 47 раз

Счетчик импульсов для расходомера

  • Цитата

Сообщение dtv » 29 июн 2020, 13:54

PROMODEM read only
read onlyСообщения: 2 Зарегистрирован: 15 июн 2020, 13:53 Имя: Антон Страна: Россия город/регион: Москва

Счетчик импульсов для расходомера

  • Цитата

Сообщение PROMODEM » 29 июн 2020, 14:55

Подойдет логгер PROMODEM 122.40, можно подключить до 6 счетчиков с импульсным выходом. Показания по расписанию передаются на сотовый телефон в виде СМС сообщения.

Админ: интересно, с каких пор техническая поддержка занимается рекламой.
И Правила перечитать не помешало бы.

Nisyboy здесь недавно
здесь недавноСообщения: 26 Зарегистрирован: 04 ноя 2019, 18:36 Имя: Алексей Страна: Россия город/регион: Курская область Благодарил (а): 9 раз Поблагодарили: 1 раз

Счетчик импульсов для расходомера

  • Цитата

Сообщение Nisyboy » 02 июл 2020, 08:31

rwg авторитет
авторитетСообщения: 838 Зарегистрирован: 29 апр 2014, 08:57 Имя: Рыбкин Владимир Геннадьевич Страна: Россия город/регион: Тверь Благодарил (а): 28 раз Поблагодарили: 78 раз

Счетчик импульсов для расходомера

  • Цитата

Сообщение rwg » 02 июл 2020, 09:14

Читайте так же:
Не курю счетчик рабочий стол

Parliament74 завсегдатай
завсегдатайСообщения: 505 Зарегистрирован: 16 ноя 2016, 11:33 Имя: Галкин Максим Владимирович Страна: Россия город/регион: Магнитогорск Благодарил (а): 7 раз Поблагодарили: 124 раза

Счетчик импульсов для расходомера

  • Цитата

Они до сих пор любят такие устройства ставить.
На последнем проекте видел вот такую штуку: KFU8-UFC-1.D на газовой горелке, к которому подключался импульсный датчик IFM N95000 и дальше уже 4-20 шли в ПЛК. У IFM есть похожие устройства типа DW 2503, у Wago — 857-500, но автору надо несколько иное, для энкодеров я видел похожие «удлинители», типа GV210 от Motrona, я подозреваю что подобные устройства должны подойти и для простых импульсных сигналов.

Но проще, ИМХО, где-то по месту поставить счётчик импульсов и если дальше надо с сигналом работать, по тому же Modbus пробрасывать дальше данные.

Ещё можно поставить что-то типа счётчика импульсов LoRaWAN, к которому все 3 датчика подключить и дальше уже на сервере получать значения с интервалом в час (или какое требуется), возможно автору мгновенные значения расхода и не надо смотреть.

Устройство и принцип работы ИС

Перед знакомством с устройством счетчика, в первую очередь, обратим внимание на то, что оно зависит как от принципа его действия, так и от функциональных возможностей. Так, устаревшие индукционные образцы в основном используются в однофазных питающих цепях и не могут обеспечить высокую точность измерений и режим с несколькими тарифами.

Для того чтобы понять принцип работы индукционного прибора, следует ознакомиться со всеми деталями его устройства. Классические представители этого класса состоят из следующих основных частей:

  • Корпуса, состоящего из двух половинок;
  • Двух обмоток с магнитными сердечниками, одна из которых является токовой, а другая – рассчитана на измерение напряжения;
  • Противовеса полюсов и алюминиевого диска, насаженного на ось с червячным редуктором;
  • Счетного механизма и тормозного магнита.

Простыми словами, работу индукционного счетчика можно представить следующим образом.

Основой измерительной частью прибора являются два электромагнита, изготовленные в виде соленоидов, расположенных под углом 90 градусов. На обмотку одного из них поступает токовая составляющая измеряемой электрической мощности, а на другую катушку подается соответствующее ей напряжение (смотрите фото ниже).

Расположение катушек в счетчике

Важно! В соответствии с электрической схемой учетного узла, его токовая обмотка включается в измерительную цепь последовательно, а катушка напряжения – параллельно.

Такой способ их подключения обеспечивает наведение в зазоре между электромагнитными сердечниками суммарной ЭДС, пропорциональной произведению тока и напряжения, то есть мощности.

В это общее для обоих сердечников поле помещается закреплённый на оси алюминиевый диск, передающий вращающий момент через червячный редуктор на простейший счётный механизм. Под воздействием суммарной ЭДС, создаваемой поданным на схему напряжением (оно всегда постоянно) и изменяющимся, в зависимости от нагрузки током, легкий диск начинает вращаться. Шлюшки кайфуют от развратного секса, они любят, когда толстые члены трахают их попки. Смотри порно глубокий анал на сайте https://analnoe-porno.org/glubokiy . Здесь самые развратные сучки разрабатывают свои жопы и требуют ещё больше членов .

Читайте так же:
Поставили счетчики месяц оплачен

Заметьте! Скорость его вращения пропорциональна величине формируемого в зазоре общего э/м поля, а, следовательно – и потребляемой квартирной сетью мощности.

Ответ на вопрос, как работает электромеханический индукционный счетчик, оказывается совсем простым: чем быстрее крутится его диск с меткой в средней части, тем больше расходуется энергии в данной потребительской сети.

Принцип действия 3-х фазного прибора этого же типа ничем существенно не отличается от уже описанного ранее. Разница будет лишь в конструкции счетных узлов и э/м катушек, число которых увеличивается вдвое (по количеству дисков). Внешний вид трехфазного счетчика приведён на рисунке ниже.

3-х фазный индукционный счетчик

По мере совершенствования производственных технологий на смену уже устаревшим устройствам индукционного типа приходят современные электронные приборы, обеспечивающие более высокое качество учёта электроэнергии.

Инструкция к счетчику Энергомера

Ниже приведена инструкция на счетчик Энергомера ЦЭ6807
, который рассмотрен в статье. Там приведены все параметры, схема подключения, а также устройство и принцип работы счетчика по версии производителя.

Была ещё такая бумажечка, чтобы правильно писали показания:

По правилам, цифра, обозначающая доли киловатт часа, должна быть обязательно выделена графически. Что и выполняется, смотрите фото счетчика в корпусе.

Со стремительным развитием электронно-вычислительной техники на смену счетчикам пришли электронные(цифровые). Принцип работы любого электрического счетчика основывается на том, чтобы объединить мгновенные значения силы тока и напряжения, потребляемые из сети, за определенную единицу времени для последующего отображения на счетном устройстве в виде готовых киловатт-часов.
Электронный счетчик состоит из основных узлов:

  • датчики тока и напряжения;
  • преобразователь мощности в частоту импульсов (КР1095ПП1);
  • центральный микроконтроллер(устройство управления -МС68НС05КJ1);
  • постоянно-запоминающее устройство (ПЗУ);
  • контроллер жидкокристаллического дисплея (ЖКИ-К182СВГ2);

Электрические сигналы от датчиков тока и напряжения поступают к преобразователю мощность-частота, который выполняет операцию перемножения, получая потребленную мощность. Полученное значение мощности преобразователь передает в виде импульса на вход центрального микроконтроллера, который, в свою очередь, суммирует импульсы за определенное время, получая кВт∙ч. Центральный микропроцессор передает данные микропроцессору ЖКИ, которые, в итоге, отобразятся на дисплее.

Для сохранения показаний счетчика в случае потери электропитания используется запоминающее устройство EEPROM. Если счетчик вдруг обесточился, то после его включения микроконтроллер сначала извлекает из ПЗУ последнее сохраненное значение и отображает на дисплее. После чего продолжает подсчитывать импульсы от преобразователя, обмениваясь данными с EEPROM, и увеличивает показания счетчика.

Внося изменения в программу микроконтроллера ЖКИ можно задавать разные режимы отображения информации на дисплее такие, как дату, время, потребленная нагрузка по тарифам и другое.

Наличие у электронного счетчика внешнего интерфейсного канала на примере RS-485 позволяет объединять счетчики в группы и передавать все данные в электроснабжающую компанию, что дает возможность отключения электричества у потребителей в случае неуплаты.

В качестве датчика тока служит измерительный трансформатор (трансформатор тока) или шунтирующая пластинка; датчик напряжения- тр-р напряжения.

Трехфазный электронный счетчик имеет такую же конструкцию и обладает функциями отображения на дисплее активной, реактивной и полной потребленной электроэнергии и др.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector