Предел регулировки тока теплового реле
Устройство и принцип действия теплового реле
Март 17th, 2016
admin
Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.
Чаще всего на предприятиях используются тепловые реле серии ТРЛ, РТЛ, РТТ и другие. В этой статье рассмотрим устройство и принцип действия реле РТТ-111 УХЛ 4, которое используется с магнитными пускателями серии ПМЕ.
Технические характеристики теплового реле РТТ-111 УХЛ4
-номинальный ток теплового расцепителя – 10 А;
-напряжение силовой цепи – 220 В, 400 В, 660 В;
-один нормально замкнутый контакт 95-96;
-уставка тока срабатывания от 5,35 А до 7,35 А.
Устройство и принцип действия теплового реле
Тепловые реле устроены аналогично друг другу и состоят из следующих основных деталей. Главным чувствительным элементом является биметаллическая пластина, состоящая из двух металлов: сплавов железа с никелем и латуни, соединенных пайкой и имеющих разные по величине коэффициенты линейного теплового расширения. Этот коэффициент характеризует то, насколько может удлиняться, в данном случае, металлическая пластина при ее нагревании. Для сравнения, коэффициент линейного теплового расширения латуни составляет 18,7 () по сравнению с сплавом железа и никеля 1,5 (), поэтому при нагреве латунь будет быстрее увеличиваться в длине, изгибая, тем самым, биметаллическую пластину в свою сторону. Это свойство и используется в тепловом реле!
1-корпус теплового реле;
2-биметаллическая пластина с нагревательным элементом;
5-пружина замыкающего контакта;
6-винт регулировки пластины температурного компенсатора;
7- пластина температурного компенсатора;
9-эксцентрик с движком уставки тока срабатывания;
10- кнопка возврата реле в рабочее состояние.
По закону Джоуля-Ленца электрический ток, протекающий по проводнику вызывает его нагрев, то есть часть электрической энергии уходит на тепловые потери. И чем больше по значению сила тока в проводника одного и того же поперечного сечения, тем больше он нагревается (перегрузка). Но в тепловых реле биметаллическая пластина нагревается непосредственно от нагревательного элемента-проводника, по которому протекает электрический ток к электродвигателю. Нагретая и изогнутая биметаллическая пластина воздействует через толкатель на исполнительную пластину температурного компенсатора, которая, в свою очередь, выводит из зацепления замкнутые контакты в цепи катушки магнитного пускателя и кнопку включения реле в рабочее состояние(наиболее наглядно изображено на этом рисунке).
Так как на работу теплового реле влияет температура окружающей среды (дополнительный нагрев), то в качестве «противовеса» используется также биметаллическая пластина температурного компенсатора, которая изгибается в противоположную сторону и регулируется специальным винтом.
На эксцентрике или регуляторе тока срабатывания есть шкала с 5 делениями влево(уменьшение тока) и с 5 делениями вправо (увеличение тока) от начальной риски. Ток срабатывания регулируется путем изменения зазора между толкателем и исполнительной пластиной с помощью воздействия движка эксцентрика на пластину температурного компенсатора.
При обрыве питания одной из фаз трехфазного электродвигателя нагрузка переходит на две другие фазы, что приводит к возрастанию в них электрического тока, нагреву обмоток и срабатыванию, в итоге, теплового реле- защита от неполнофазного режима!
Рекомендации:
-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);
— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;
-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!
Особенности теплового реле
Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.
Тандем контактора и теплового реле
Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.
Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.
Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.
Нормально разомкнутые и нормально замкнутые контакты
Характеристики теплового реле
Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:
- Номинальный ток защиты;
- Предел регулировки уставки тока срабатывания;
- Напряжение силовой цепи;
- Количество и тип вспомогательных контактов управления;
- Мощность коммутации контактов управления;
- Порог срабатывания (коэффициент отношения к номинальному току)
- Чувствительность к асимметричности фаз;
- Класс отключения;
Схема подключения
В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).
Схема подключения ТР к контактору в магнитном пускателе
Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.
Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.
В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».
Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР
По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).
На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.
Кнопка «Стоп» служит для ручного выключения устройства защиты.
Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.
Управление повторным взводом
Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.
Регулировка уставки срабатывания относительно метки
При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.
Графики времятоковой характеристики
Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.
Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.
Также у некоторых тепловых реле имеется флажок срабатывания защиты.
Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,
Защита настроек и маркировка
Как выбрать реле по характеристикам?
При подборе реле следует изначально разобраться в его основных параметрах:
- значению номинального тока;
- диапазона регулирования тока сработки;
- сетевого напряжения;
- тип и количество клемм;
- расчетной мощности подключаемого устройства;
- минимальной границы сработки;
- класса устройства;
- реакции на фазный перекос.
Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.
Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.
Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.
Виды устройств
Ассортимент тепловой защиты достаточно широк. А поскольку устройства могут использовать, как переменный ток, так и постоянный, то все реле делят на две большие группы. Также приборы разделяются по фазности. Есть реле, которые устанавливаются в однофазной сети. Существует тепловое реле для трехфазного электродвигателя. Но также есть возможность монтажа в сеть с тремя фазами, но с контролем лишь двух из них.
Защита может быть:
- Только с контактом, замыкающимся при срабатывании.
- Лишь с размыкающими клеммами.
- С контактами, использующими оба способа.
- Способными переключаться.
Приборы могут отличаться кнопкой возврата в первоначальное положение. Кроме ручного сброса, эта функция может выполняться в автоматическом режиме. У устройства могут быть настраиваемые крайние параметры перегрузки. А некоторые модели самостоятельно компенсируют температурные перепады в помещении.
Если брать узконаправленность тепловых реле, то их делят на типы:
- Для трехфазных асинхронных машин – РТЛ.
- Трехфазный агрегат с короткозамкнутым ротором – РТТ. По сути это магнитный пускатель с тепловым реле.
- Для работы вместе с предохранителями – РТИ.
- Чтобы запустить двигатель на постоянном токе – ТРН.
- Контролирующие температуру без замера рабочих токов – РТК.
- Расположенные внутри электродвигателя в виде плавкого предохранителя – РТЭ.
Как подключить тепловое реле через трансформаторы тока 1
Описание
Чем выше значение протекающего через реле РТ-03 тока, тем сильнее изгибается биметаллическая пластина реле, размещенная в каждом полюсе. При достижении током величины 1.1 х заданное значение тока уставки изгиб пластины становится таким, что она размыкает контакт, и электродвигатель отключается от сети.
Тепловое реле перегрузки РТ-03 может устанавливаться непосредственно вместе с контактором, так и отдельно от него на специальное основание ОС-03.
Сфера применения
Тепловые реле перегрузки РТ-03 разработаны для защиты цепей переменного тока и электродвигателей от перегрузки, асимметрии фаз, затянутого пуска и заклинивания ротора.
Двухполюсные тепловые токовые реле ТРН-10 УХЛ4, ТРН-25 УХЛ4 с температурной компенсацией, с номинальными токами тепловых элементов от 0,5 до 25 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей с короткозамкнутым ротором, работающих от сети с номинальным напряжением до 500 В при частоте 50-60 Гц. Реле могут применяться в сетях постоянного тока с номинальным напряжением до 440 В. От коротких замыканий реле не защищают и сами нуждаются в такой защите.
Условия эксплуатации:
— высота над уровнем моря до 1000 м (допускается работа на высоте до 2000 м при номинальном напряжении не более 380 В при температуре окружающего воздуха от +1 до +40 °С;
— относительная влажность воздуха при температуре +20 °С не более 80% и не более 50% при температуре +40 °С;
— частота вибрации и мест крепления 25 Гц при ускорении не более 0,7 г.
Реле выпускаются только в открытом исполнении и не рассчитаны для работы во взрывоопасной среде, а также в среде, содержащей значительное количество пыли, агрессивные газы и пары в концентрациях, разрушающих металлы и изоляцию. Реле устанавливают в местах, защищенных от прямого попадания воды, масла, металлической пыли и т. п., а также на открытом воздухе в оболочках, не подвергающихся воздействию солнечной радиации.
Технические характеристики:
Мощность, потребляемая одним полюсом:
Ток уставки регулируют поворотом эксцентрика (плавно), а также сменой нагревателей (ступенчато), т. е. изменением номинального тока теплового элемента. Для каждого типа реле ТРН-10, ТРН-25 предусмотрен комплект сменных нагревателей. Нагреватели реле указанных типов различаются фиксатором, установочными размерами и формой мест крепления — все это обеспечивает свободную установку нагревателей только в реле того типа, для которого они предназначены.
Реле имеют регулировку тока несрабатывания в пределах — минус 25% плюс 25% от величины номинального тока несрабатывания. При нулевом положении регулятора он является номинальным током теплового элемента (Iн). Каждое деление шкалы регулятора соответствует 5% величины номинального тока несрабатывания.
Благодаря наличию в реле температурной компенсации ток уставки практически не зависит от температуры воздуха в месте установки реле и может изменяться в пределах ±3% от номинального тока уставки на каждые 10 °С изменения температуры окружающего воздуха от +20 °С.
Реле не срабатывают при длительном обтекании обоих полюсов током уставки и срабатывают в течение 20 мин после увеличения тока: на 20% — у реле, нагреватели которых установлены заводом-изготовителем; на 25% — у реле, если нагреватели установлены потребителем. При обтекании реле шестикратным током несрабатывания с холодного состояния при температуре среды плюс 20 °С реле срабатывает в пределах — от 6 до 25 с. Величины номинальных токов несрабатывания приведены в таблице 1.
Таблица 1.
Реле имеют только ручной возврат. При срабатывании реле возврат можно осуществлять через 2 минуты.
Реле имеют один размыкающий контакт, допускающий отключение и длительное протекание токов, указанных в таблице 2.
Акустическое реле
Акустическое реле (рис. 11, 12) используют для контроля уровня шума, а также в составе систем охранной сигнализации [Б.С. Иванов, М 2/96-13]. Помимо прочего, такие схемы часто используют в системах связи — в устройствах голосового управления каналом связи.
Рис. 11. Принципиальная схема акустического реле.
Рис. 12. Принципиальная схема акустического реле на транзисторах.
Так, при разговоре автоматически и без вмешательства оператора происходит переключение радиостанции или линии связи с приема на передачу. Устройство содержит датчик звукового сигнала — микрофон, в качестве которого можно использовать обычный микротелефонный капсюль, усилитель низкой частоты, детектирующее и исполняющее (релейное) устройство.
Коэффициент усиления УНЧ определяет чувствительность акустического реле. На микрофон может быть установлен звукоулавливающий рупор для повышения направленных свойств акустического реле. Резонансный фильтр, включенный после УНЧ, позволяет акустическому реле реагировать только на звук определенной частоты и игнорировать остальные звуки.