Онлайн помощник домашнего мастера
Реле контроля фаз – основное назначение, принцип работы и схема подключения. ТОП-лучших производителей электрооборудования!
В трёхфазной электрической цепи при неравномерном значении напряжения на разных фазах возникает очень неприятное явление – перекос фаз. Его результатом, как правило, становится значительное понижение мощности прибора. Это приведет к поломке, как промышленного оборудования, так и обычной бытовой техники.
Не будем углубляться в причины возникновения этого перекоса, а рассмотрим способы его устранения. Для предотвращения возникновения перекоса фаз, который в основном проявляется в трёхфазных сетях, используют реле контроля фаз.
Краткое содержимое статьи:
Принцип работы
Разберем на примере щитовых фазоуказателей типа Ц1425 и Ц425.1. Фазоуказатель состоит из унифицированного измерительного механизма магнитоэлектрической системы и преобразователя-выпрямителя.
Ток, протекающий через рамку измерительного механизма, представляет собой разность двух токов, выпрямленных мостами V1 и V2. При прямом порядке следования фаз ток, выпрямленный мостом V2, больше тока, выпрямленного мостом V1, приблизительно в два раза. В этом случае суммарный ток через рамку измерительного механизма вызывает отклонение подвижной системы с указателем вправо от средней отметки в направлении стрелки на циферблате.
При обратном порядке следования фаз ток, выпрямленный мостом V1, будет больше тока, выпрямленного мостом V2, и указатель отклонится в противоположную сторону.
Правильный порядок фаз
Правильный порядок фаз выглядит следующим образом: Поскольку оба светодиода управляются дополнительными выходами одного и того же триггера, может гореть только один светодиод. Для правильной последовательности фаз это будет зеленый — высокое состояние на выходе Q триггера A и, соответственно, низкое состояние на выходе из Q. Для обратной фазовой последовательности имеем обратную ситуацию на триггерах A и красный включенный светодиод.
Давайте посмотрим, как выглядит напряжение фазы S и T, если мы рассматриваем фазу R в качестве опорного напряжения:
Восходящий фронт на входе генератора CLK триггера A будет переписываться на выход Q текущего состояния в момент на входе D. Как видите на диаграмме, этот вход подключается к фазе S.
Процесс синхронизации генерируется из фазы (входа) системы T.
При правильной последовательности фаз (как на рисунке выше) нарастающий фронт будет происходить, когда H-состояние будет достигнуто на входе D спуска A.
Когда изменяется последовательность фаз S и T, состояние L спуска A находится в состоянии L.
Трёхфазная сеть: почему происходит отгорание нуля
По большей части запитка бытовых потребителей происходит по однофазной схеме. Но частично всё же электроснабжение проводится с использованием трёхфазных кабелей. Конечно, качественная кабельная продукция характеризуется строгими техническими и проводниковыми показателями, а значит необходимостью прокладывать и эксплуатировать их по правилам, учитывая допустимые параметры нагрузки.
Что же означает фраза электрика «Отгорел ноль!»? Почему ноль намного чаще отгорает в трёхфазной сети, а не в однофазной? Каковы прогнозы? Эти и другие вопросы возникают у владельцев домов и других объектов с подобным электроснабжением. Разберемся вместе, как предупредить развитие таких ситуаций, тем самым уменьшив последствия и проблемы.
Понятие «нуля» в однофазной цепи
«Ноль» для однофазной цепи – это один из двух проводников, которые не имеет высокого потенциала относительно «земли». Второй проводник – это «фаза», который имеет высокий потенциал (220 В для бытовых сетей). Электрический ток, который проходит по фазе, всегда равен току, который идет по «нулю». Именно поэтому нет предпосылок для отгорания нуля в однофазной сети. Ко всему прочему, линия, как правило, защищена качественной и недорогой автоматикой.
Вот так это выглядит схематически:
Понятие «нуля» в трёхфазной цепи
Как многим известно, трёхфазные линии бывают двух видов относительно нагрузки к фазам. Так выделяют такие виды как: «звезда» и «треугольник». В случае подключения по типу «треугольник» ноль отсутствует чисто физически, а значит проблемы отгорание нуля — попросту нет. А вот схема «звезда» в трёхфазном подключении имеет ноль, как особый проводник. Рассмотрим подробнее.
Схема подключения «звезда» в трёхфазной цепи:
В данном случае по каждой из 3-х фаз проходит равная по значению нагрузка переменного электротока. При этом они сдвигаются по временной фазе на 120 градусов либо на 1/3 всего периода. В результате получается сумма равных, но смещенных значений векторов, которые дают суммарное нулевое значение. По сути, это идеальный случай, когда по нулевому проводу идет такой нулевой ток. А по факту, обесточенный ноль не нужен совершенно.
Реальная ситуация отличается от идеальной. Ведь нагрузки всех фаз в большинстве случаев хоть немного, но отличаются. То есть суммарный вектор не равен нулю. В результате, не происходит компенсации токов, а значит, по нулевому проводнику проходит небольшой уравнительный ток. Именно поэтому во многих кабелях с 3-мя фазами есть 4-я жила – нулевая, которая характеризуется меньшим сечением, чем сечение фазных проводников. Основания причина – экономия электротехнической меди либо алюминия. При более детальном рассмотрении становится понятно, что таких токов недостаточно, чтобы вызвать отгорания нуля. В чем же тогда причина?
Причина в том, что трёхфазная линия включает несимметричные однофазные нагрузки. И при этом, разница в величине нагрузок может быть очень значительной, что электрики характеризуют как «перекос фаз». На стадии проекта проводится работа по максимальному уравнению нагрузок на фазы, но в действительности, распределение мощностей не всегда эффективно. При включении бытовых приборов высокой мощности по одной фазе нет возможности предугадать или компенсировать нагрузку на остальные фазы. В результате, разность нагрузки присутствует.
Обращая внимание на собственный быт, разве многие из нас задавались вопросом – насколько сильно отразится на кабельных линиях нагрузка при включенных одновременно стиральной машине и электрочайнике? Сложно думать о уравнительных токах и нулевой жиле, когда об этом ничего не знаешь.
Даже в таких случаях, когда суммарное значение фазных токов не равняется нулю, экстремальных ситуаций не развивается. Ноль может отгореть очень редко.
Отгорание нуля – когда происходит
Когда же происходит это пресловутое отгорание? И стоит ли об этом говорить? И вот здесь есть одно небольшое «но». Еще с 90-х годов в наш обиход прочно вошло такое понятие, как импульсный блок питания, который используют в целях экономии электроэнергии. Его применяют везде – компьютерах, различной бытовой технике. При этом, в таких блоках питания ток проходит только лишь в одной трети от полного одного полупериода. В результате, в трёхфазных сетях начинают протекать никак не скомпенсированные токи, которые идут без всякого контроля в нулевой провод. По «нулю» идут токи разных фаз от ассиметричной нагрузки. При суммировании этих данных, выходит, что ток нуля может соответствовать значению, близком или превышающему номинальное фазное значение. А вот это как раз чревато тем самым отгоранием нуля.
Что спасет ситуацию? Конечно, это хорошая защитная автоматика. Главное, чересчур не экономить и не покупать трёхфазный автомат без нулевой клеммы. Ведь по сути по каждой фазе проходит электрический ток в пределах номинала и автомат продолжает защищать фазы, а вот ноль остается не у дел.
Еще одна причина, в результате которой может произойти отгорание нуля, это обрыв одной из фаз при наличии больших нагрузок. В данном случае, суммарное значение токов двух фаз будет намного больше допустимого.
Важно помнить, что не стоит ставить отдельный автомат на нулевой кабель, так как это реально опасно. При отключении провода уравнительные токи будут искать выход через провода фазы. И в этом случае результат всегда предсказуем и опасен. Лучшее решение – работа со специалистами еще на этапе проектных работ, а также покупка кабельной продукции хорошего качества с соответствующими эксплуатационными характеристиками.
Порядок фаз для трехфазного счетчика
Процесс определения соответствия (чередования) фаз кабельных линий от источников электропитания к потребителю, при трёхфазном, параллельном подключении, называется фазировкой или фазированием. Основной задачей данной операции, является определение напряжения тока на каждой из токоведущих жил электрооборудования на предмет совпадения с напряжением на соответствующих жилах электросети
Предварительная и прямая фазировка
Предварительное фазирование проводится непосредственно в процессе монтажа, перед первым включением электрооборудования. А также в случае ремонта оборудования или силового кабеля, когда есть вероятность изменения очерёдности фаз, и их несоответствия между собой и шинами распределительного устройства. Работы по предварительной фазировке проводяться исключительно на электрооборудовании находящееся без напряжения.
А при вводе в работу электрооборудования, в обязательном порядке производится косвенное или прямое фазирование оборудования. Поскольку, только проведение данной операции, может дать гарантию соответствия фаз всех элементов электроцепи.
Выбор метода, прямой или косвенной фазировки, главным образом, зависит от вида оборудования и класса напряжения электросети. Принципиальным отличием методов, является то, что прямой метод производится на рабочем напряжении и является более наглядным.
Косвенные методы
При вводе в эксплуатацию новых распределительных устройств (РУ)
Данный метод сводится к проверке соответствия маркировки (расцветки) выводов вторичных обмоток трансформаторов напряжения, с указаниями ПУЭ. Наиболее объективным способом проверки данной операции является пофазная подача электрического тока с проверкой на соответствие расцветки фаз в РУ, фазам энергосистемы. Вместе с тем проверяется маркировка вторичных цепей по появлению напряжения на выводах той или иной фазы трансформатора напряжения.
Вторичные обмотки других трансформаторов напряжения в дальнейшем фазируют с трансформатором, для которого маркировка уже проверена. Выбор метода зависит от схемы вторичной обмотки: заземлена ли ее нулевая точка или одна из фаз.
В первом случае для фазировки применяют вольтметр со шкалой на двойное фазное напряжение, во втором — на двойное линейное напряжение. Например, необходимо проверить совпадение фаз двух трансформаторов напряжения, включенных со стороны высокого напряжения (ВН) на разные системы шин (или секции), то для этого шины соединяют между собой включением шиносоединительного (или секционного) выключателя и затем производят фазировку.
При двойной системе шин
В данном случае фазировку проводят на вторичном напряжении трансформаторов. Для этого при включённом шиносоединительный выключателе с помощью вольтметра, устанавливают совпадение фаз вторичных напряжений трансформаторов рабочей и резервной систем шин. Затем одну из систем переводят в резерв, отключают выключатель соединяющий шины и снимают с её привода оперативный ток. К резервной линии подключают цепь, фазировку которой нужно произвести и на неё подают ток.
Затем производят фазировку на выводах вторичных цепей трансформаторов напряжения рабочей и резервной систем шин. С помощью вольтметра в последовательности (рис 1.): a1-a2; a1-b2; а1-с2; b1-а2; b1-b2; b1-c2, производят измерения. При нулевых показаниях вольтметра, включают шиносоединительный выключатель, а сфазированную цепь включают на параллельную работу.
Схема фазировки при двойной системе шин (Рис. 1)
При положительных показаниях прибора фазируемую цепь отключают и производят пересоединение токопроводящих частей. Заново производят процесс фазировки, добиваясь соответствия фаз резервной и фазируемой цепи.
Прямой метод фазировки цепи 6-10 кВ
В качестве указателя напряжения применяются УВН-80, УВНФ и другие. В обязательном порядке проводится проверка исправности указателя напряжения. Осуществляется внешний осмотр: на целостность лакового покрытия, наличие штампа о проведении периодических испытаний, целостность изоляции соединительного кабеля.
Заказать периодические высоковольтные испытания указателей и других СИЗ в электролаборатории МЕТТАТРОН.
Оставить заявку
После внешнего осмотра приступают к проверке исправности указателя.
УВН 80 2М с ТФ — указатель высокого напряжения с трубкой фазировки
Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки на несколько секунд подносят к одной из фаз цепи, которая заведомо находится под напряжением, индикаторная лампочка должна загореться (рис. 2а). Затем на насколько секунд щупами обеих трубок касаются одной токоведущей части (рис. 2б). Если лампочка не загорелась, значит указатель исправен и можно проверить наличие напряжения на всех фазах. Для этого щуп трубки с резистором соединяют с заземлением, а щупом другой трубки поочередно касаются всех шести зажимов разъединителя (рис. 2в). В каждом случае сигнальная лампа должна гореть.
Схема прямой фазировки (Рис. 2)
Процесс непосредственно самой фазировки заключается в подключении одного щупа трубки указателя напряжения, к любому крайнему выводу электроустановки, а щупом другой трубки поочерёдно касаются трёх выводов фазируемой линии (рис. 2г).
Если при подключении щупов указателя, лампочка не горит, то это означает, что разность потенциалов фаз между цепями отсутствует, а фазы являются одноимёнными (согласно включению). Найдя первую фазную пару, можно приступать к дальнейшей фазировке. При нахождении второй пары, проверка третьей не обязательна и является контрольной.
Далее одноимённые фазы соединяют на параллельную работу, при условии расположения одноимённых фаз друг против друга. В противном случае производится переподключение фаз в порядке совпадения расположения фаз.
Требования к безопасности при проведении фазировки
К производству работ допускается бригада состоящая минимум из двух электромонтёров. При этом, у одного из них должна быть группа по электробезопасности не ниже 4-ой. Он выполняет контроль за производством работ и вносит записи о выполненных операциях в бланке переключений и заполняет протокол фазировки.
Скачать образец протокола фазировки — форма 14.doc
Второй электромонтёр (оператор), который непосредственно проводит измерения, должен иметь группу не ниже 3-ей. В отдельных случаях, при необходимости, измерения может проводить старший электромонтёр. Все измерения производятся исключительно в диэлектрических перчатках, которые также как и УВН должны иметь штамп о проведении периодических испытаний. Перед фазировкой перчатки необходимо проверить на механические проколы и трещины, путём скручивания краг в сторону пальцев. Не допускается проведение измерений в условиях дождя, снега или густого тумана.