Teres-1t.ru

Инженерные решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный паяльник: для чего нужен, как работает и что это такое? Пошаговая инструкция по выбору и использованию паяльника

Импульсный паяльник: для чего нужен, как работает и что это такое? Пошаговая инструкция по выбору и использованию паяльника

Паяльные установки относятся к довольно распространенным устройствам, широко использующимся в быту. С помощью паяльника можно ремонтировать радио и цифровую технику, производиться починку микросхем и некоторых деталей для автомобиля.

Назначение импульсных паяльников весьма обширно. Подобные инструменты часто применяются не только для домашнего пользования, но и на производстве, на частных СТО, ремонтных мастерских.

Содержание

Электрическая схема паяльника

Надежность в работе и длительный срок эксплуатации обуславливается простотой рассматриваемой конструкции. Электрическая схема представлена сочетанием следующих элементов:

  1. Источника питания, которым зачастую выступает бытовая сеть энергоснабжения. Также в продаже можно встретить портативные варианты исполнения со встроенным блоком питания.
  2. Вилка с проводом требуется в том случае, если конструкция питается от бытовой сети.
  3. Нагревательной рабочей частью паяльника является проволочная спираль. Она преобразует электричество в тепловую энергию, за счет чего и происходит нагрев обрабатываемых элементов при пайке.

Электрическая схема паяльника

Электрическая схема паяльника

Принцип действия электрической схемы довольно прост. Нагревательной частью паяльника является спираль нихромовой проволоки, при прохождении по которой тока происходит нагрев обмотки. По специальному проводящему элементу проходит передача тепла жалу паяльника.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

§ 30. Электрический ток и его использование

Электрическая энергия, которую использует человек, не существует в природе в готовом для потребления виде. Её нельзя откопать, как полезное ископаемое — нефть или уголь. Поэтому необходимую для производственных и бытовых нужд электрическую энергию человек научился получать из других видов энергии: механической, тепловой, световой, энергии химического процесса.

Устройство, преобразующее какую-либо энергию в электрическую, называется источником (рис. 52).

Рис. 52. Источники электрической энергии: а — гальванический элемент, б — батарея гальванических элементов, в — аккумулятор, г — электрогенератор

Основная часть используемой человеком электроэнергии вырабатывается из механической энергии специальными электромеханическими машинами — электрогенераторами.

В электрогенераторе механическая энергия турбины — вращающегося колеса специальной конструкции — преобразуется в электрическую энергию. Турбина вращается силой падающей воды — на гидростанциях, паром — на тепловых электростанциях, силой ветра — на ветряных электростанциях, двигателем внутреннего сгорания — на борту самолёта.

Источником электрической энергии на космических станциях являются фотоэлементы, преобразующие солнечную энергию в электрическую.

Переносными источниками электрической энергии являются гальванические элементы, аккумуляторы, а также батареи из них. В них электрическая энергия получается за счёт химического процесса взаимодействия разнородных металлов с особым веществом — электролитом. Существуют ещё малогабаритные механические генераторы, работающие от мускульной силы рук или ног человека, например генератор для велосипедной фары.

Электроэнергия передаётся при помощи потока мельчайших заряженных частиц — электрического тока. В природе обнаружено два вида зарядов, условно названных положительными и отрицательными. Вокруг каждого из зарядов существует электрическое поле, за счёт которого одноимённые заряды отталкиваются друг от друга, а разноимённые притягиваются друг к другу.

Читайте так же:
Что такое тепловой ток полупроводникового диода

Направленное движение электрических зарядов называется электрическим током.

Вещества, пропускающие электрический ток, называют проводниками. Вещества, не пропускающие электрический ток, называют диэлектриками или изоляторами.

За направление электрического тока условно принято движение положительных зарядов, которые перемещаются от положительного полюса источника тока к отрицательному по проводнику, подключённому к полюсам.

Количество зарядов (q), протекающих через поперечное сечение проводника за единицу времени, называется силой тока (I):

I = q/t.

Сила тока измеряется в амперах (А) — в честь французского учёного Андре Ампера.

В металлических проводниках ток образуется движением электронов, имеющих отрицательный заряд.

В газовой среде и жидкостях из-за более разреженной структуры вещества (в отличие от жёсткой кристаллической решётки металла) электрический ток образуется как за счёт электронов, так и за счёт ионов — положительных и отрицательных частиц атомов или молекул веществ.

Ток называется постоянным, если он не меняется с течением времени ни по величине, ни по направлению. Ток, у которого сила и направление периодически изменяются, называется переменным.

Практическое использование электрической энергии основано на некоторых физических явлениях, которыми сопровождается прохождение тока через проводник. Тепловое действие электрического тока широко используют в работе осветительных и электронагревательных приборов. Магнитное действие используют в измерительных приборах, электромагнитных реле, электромагнитных телефонах и громкоговорителях, электрических генераторах и двигателях.

Прохождение постоянного электрического тока через жидкие среды сопровождается химическими реакциями. Это свойство широко используется в аккумуляторах, применяется в электрометаллургии, при электрохимической обработке материалов и в опреснителях морской воды.

Электрический ток в газовой среде вызывает свечение газа. На основе этого явления работают дуговые источники света (например, в прожекторах). Электрический разряд в воздухе сопровождается не только свечением, но и повышением температуры электродов, что используют для сварки и резки металлов.

Устройства, в которых происходит преобразование электрической энергии в другие виды энергии — свет, тепло, механическую и химическую энергию, — называются приёмниками или потребителями электрической энергии, а в электротехнике — нагрузкой (рис. 53).

Рис. 53. Потребители электрической энергии

Чтобы электрическое устройство (нагрузка) работало, его необходимо соединить с полюсами источника тока. На практике источник с нагрузкой часто соединяют с помощью дополнительных проводников, в быту и электротехнике называемых проводами.

То, о чем мы говорили сейчас: 1) источник электрической энергии, 2) нагрузка и 3) соединительные провода — всё это вместе называется электрической цепью.

Новые слова и понятия

Источник питания, электрические провода, потребитель, нагрузка, электрическая цепь.

Проверяем свои знания

  1. Что такое электрический ток и что такое сила тока, в каких единицах она измеряется?
  2. Назовите носители тока в металлах, жидкостях и газах.
  3. Что называют электрической цепью?
  4. Перечислите основные элементы электрической цепи и функции, которые они выполняют при прохождении тока.
  5. Узнайте, что является источником электрического тока в мотоцикле, автомобиле.
  6. Какие электропотребители есть у вас дома?
  7. За счёт чего можно экономить электроэнергию в быту и на производстве?

Это интересно

Ещё в Древней Греции было установлено, что янтарь после натирания шерстяной тканью притягивает лёгкие предметы. По-гречески слово «янтарь» звучит как «электрон». От этого слова и произошёл термин «электричество».

история создания, развития и будущее популярного оптического прибора. »»»

тепловое действие электрического токаСуществует много применений теп­лового действия электрического тока. Можете ли вы представить себе жизнь без электроплиток, электрокастрюль, электронагревателей, сушилок для волос, паяльников и пр.?

Читайте так же:
Что такое тепловой импульс тока кз

тепловое действие электрического тока

Все это ра­ботает вследствие того, что когда че­рез проволоку проходит электрический заряд, то она нагревается.

При изучении механики вы узнали, что когда тело падает с определенной высоты, то потенциальная энергия уменьшается и убыль энергии преоб­разуется в какую-то другую форму энергии. Это касается и электричества. Когда заряд перемещается от более высокого потенциала к более низкому, то высвобождается энергия. Ранее мы вы прочитали, что если проделана ра­бота 1 Дж для перемещения заряда в 1 Кл между двумя точками против электрического поля, то разность по тенциалов между этими двумя точка­ми составляет 1 В. Следовательно, если заряд в 1 Кл проходит через разность потенциалов в 1 В в на­правлении электрического поля, то вы­свобождается 1 Дж энергии. Таким образом, при движении заряда энер­гия W (в Дж) = разность потенциа­лов * заряд.

Эта энергия высвобождается в каче­стве тепловой энергии, и W=VIt. Вместе с тем поскольку V = IR, то W=I 2 Rt

Более того, I=V/R, поэтому W=V 2 /R t

Таким образом, формула для теп­лоты, выделенной электрическим то­ком, может быть записана тремя раз­личными способами. Избираемая для расчетов формула зависит от предо­ставленной информации.

Термопары: устройство и принцип работы простым языком

Термопарой, или термоэлектрическим преобразователем, называют устройство для измерения температуры, основой работы которого является термоэлектрический эффект.

В бытовых целях используются в различных приборах, в самых простых и технически сложных: от утюгов, паяльников, холодильников до автомобилей и отопительных котлов. Благодаря большому диапазону измеряемых температур (от -250 о С до +2500 о С) широкое применение термопары нашли в промышленности, коммунальном хозяйстве, науке и медицине. Также термоэлектрические преобразователи работают как часть систем автоматики и управления, снимая и передавая данные об изменениях температуры. Такие датчики отличаются надежностью, невысокой стоимостью, необходимой точностью и низкой инертностью.

Работа термопары основана на свойстве изменения термо-ЭДС (термоэлектродвижущей силы) от повышения или уменьшения температуры. Точность показаний зависит от типа конструкции, соблюдения технологических требований, схемы подключения проводников.

Конструкция термоэлектрического преобразователя обусловлена тепловой инерцией и чувствительностью используемых элементов, условиями применения: диапазоном температур, агрессивностью и агрегатным состоянием среды, необходимостью использовать защиту.

Принцип работы термопары

Принцип действия термопары — термоэлектрический эффект, или эффект Зеебека. Явление это было открыто ученым в 1821 году и состоит в следующем:

в замкнутой цепи из двух разнородных проводников возникает электродвижущая сила (термо-ЭДС), если места их соединения, или спаи, поддерживать при разной температуре. Эффект не возникает в случае использования однородных материалов, а также при одинаковых температурах спаев. Величина термоэлектродвижущей силы зависит от материала проводников и разницы температур контактов, направление тока в контуре — от того, температура какого спая выше.

unnamed.jpg

На практике в термопаре используют проводники из разных сплавов, они также называются термоэлектродами. Один спай, «горячий», выполняют сваркой или скручиванием и помещают в среду с измеряемой температурой; другой, «холодный», замыкается на контакты измерительного прибора или соединяется с устройством автоматического управления. В современных сложных термопарах используются цифровые преобразователи сигнала.

Термо-ЭДС возникает за счет разницы потенциалов между соединениями проводников при интенсивном нагреве или охлаждении горячего спая. Напряжение на холодном спае пропорционально зависит от температуры на горячем. При этом температура на холодном должна быть постоянной, иначе возникает большая погрешность измерений. Для высокой точности холодный контакт помещается в специальные камеры, где температура поддерживается на одном уровне.

Применение термопар и их особенности

Область применения термопар огромна, в первую очередь, благодаря широкому измерительному диапазону температур: от сверхнизких до экстремально высоких. Широкое распространение эти устройства получили также из-за стабильности и точности измерений. Их используют в бытовых и промышленных приборах, производственных технологиях для измерения температуры различных устройств, объектов и сред: воздуха, твердых тел, расплавленного металла, жидкостей и газов, вращающихся деталей, тепловых двигателей.

Читайте так же:
Зависимость теплового тока от температуры

Как датчики температур термоэлектрические преобразователи применяют в автоматизированных системах управления. В газовом оборудовании (котлы, плиты, колонки) с помощью термопар осуществляют термоконтроль. По данным термопары срабатывает аварийное отключение приборов, если превышена допустимая температура.

От назначения термопары зависит ее конструкция и материалы проводников: различные комбинации металлов предназначены для различных сред и диапазонов температур.

Рабочие элементы для защиты от воздействия внешних факторов могут помещаться в колбу, или чехол: например, защитный материал для термопары в газовом котле — нержавеющая или обычная сталь. При температурах до 1000-1100 о С применяют жаростойкие сплавы, при более высоких — фарфор, тугоплавкие сплавы. Для измерений в особых условиях среды, к примеру, при высоком давлении, требуется герметичность термопары.

Если среда измерения не оказывает вредного влияния на проводники, защиту не используют. Бескорпусный вариант с незакрытым местом соединения двух проводников отличается низкой инертностью и практически мгновенным измерением температуры.

В зависимости от количества мест измерения термопары могут быть одноточечные и многоточечные. Соответственно, длина рабочей части термопары колеблется от 120 мм до 20000 мм. Потребность во многих точках измерения (до нескольких десятков) возникает, в частности, в химической и нефтехимической промышленности для тех емкостей, где перерабатываются жидкости (реакторов, баков, колонн фракционирования).

Классификация термопар

Принцип действия термопары основан на возникновении разности потенциалов в проводниках, поэтому металлы термоэлектродов должны отличаться по химическим и физическим характеристикам. Для применения в термопарах используются различные сплавы цветных и благородных металлов.

Благородные металлы позволяют существенно повысить точность измерений, сказывается меньшая термоэлектрическая неоднородность и стойкость к окислению. Они используются для измерений до 1900 о С, при более высоких температурах необходимы специальные жаростойкие сплавы. Неблагородные металлы применяются до 1400 о С.

Все материалы проводников обладают различной плавкостью, стойкостью к окислению, диапазоном рабочих температур. Именно в указанном производителем интервале температур возможна качественная работа устройства и точные данные измерений.

Для классификации групп термопар по российскому ГОСТу используют три кириллические буквы, международная классификация подразумевает обозначение одной буквой латиницы: например, нихросил-нисиловая термопара имеет обозначение ТНН, или N; платинородий-платинородиевая — ТПР, тип В.

Другая классификация термопар учитывает типы спаев, которые могут быть использованы:

  • одноэлементные и двухэлементные;
  • изолированные и соединенные с корпусом;
  • заземленные и незаземленные.

Инерционность термопары снижается при заземлении на корпус, а это увеличивает быстродействие и точность измерений. Также для уменьшения инерционности в некоторых устройствах спай оставляют снаружи защитного корпуса.

Хромель+алюмель ТХА (тип K)

ТХА.jpg

Существует множество типов термопар, хромель-алюмель — одна из самых распространенных.

Состав сплава хромель:

  • 90% никеля
  • 10% хрома
  • 95% никеля
  • 2% алюминия
  • 2% никеля
  • 1% кремния

Возможность работы с линейной характеристикой в пределах температур от -200 о С до +1300 о С, подходит для нейтральных и окислительных сред, имеет невысокую стоимость. В восстановительной среде требуется защитный корпус. Диапазон рабочих температур зависит от диаметра электродов, может применяться при реакторном облучении.

Отличается высокой чувствительностью (примерно 41 мВ/ о С) и регистрирует даже небольшие изменения температуры, очень широко применяется во многих областях.

Читайте так же:
Тепловое движение тока определение

Недостатки и особенности. Никель имеет магнитные свойства, что вызывает изменение выходного сигнала при температурах 350 о С. В серной среде возможен преждевременный отказ, при определенных низких концентрациях кислорода работа также нарушается.

Железо+константан ТЖК (Тип J)

ТЖК 2.jpg

Надежная и недорогая термопара для промышленности и науки.

Константан обычно состоит из :

Применяется в более узком диапазоне температур по сравнению с хромель-алюмелем: -200 — +1100 о С, при этом выше чувствительность: 50-60 мкВ/ о С.

Хорошо подходит для вакуумной среды, измерения проводятся также в окислительных, восстановительных, нейтральных средах. Температура длительного воздействия — до +750 о С, кратковременного — до +1100 о С.

Нельзя постоянно применять при отрицательных температурах из-за коррозии на металлическом выводе, окислительные среды сокращают срок действия. При высоких положительных температурах негативно влияет сера.

Хромель+копель ТХК (тип L).

ТХК.jpg

Копель изготавливается примерно в таких пропорциях:

  • медь 56%
  • никель 43%
  • марганец 1%.

В основном используется для пирометрических измерений различных сред при рабочих температурах 200-600 о С, в промышленных и лабораторных установках. Максимальный диапазон измеряемых температур: от -250 о С до +1100 о С при кратковременном воздействии.

Одна из самых высокочувствительных термопар — до 80 мкВ/ о С.

Чувствительна к деформации, очень хрупкая.

Преимущества и недостатки термопар

Термопары имеют давнюю историю эксплуатации и широко применяются благодаря следующим преимуществам:

  • Способности работать в агрессивных средах и экстремальных температурах от -250 о С до +2500 о С.
  • Невысокой цены для большинства моделей. Стоимость увеличивается для приборов с благородными металлами, защитными элементами, дополнительными соединениями и разъемами.
  • Проверенной десятилетиями надежности и неприхотливости.
  • Точности измерений. Погрешность составляет до 1-2 о С в стандартных приборах, что по большей части достаточно для промышленных и бытовых нужд. Более высокоточные приборы имеют показатель 0,01 о С.
  • Простой технологии изготовления и обслуживания.

К недостаткам термопар можно отнести:

  • необходимость применения высокочувствительных приборов для снятия результатов измерений;
  • малая величина токов требует экранирующей защиты проводов для уменьшения наводки;
  • ухудшение показателей при длительном использовании в условиях перепадов температур;
  • для точных измерений требуется градуировка каждого прибора на заводе-изготовителе;
  • появление нелинейной зависимости термо-ЭДС от нагревания, если превышаются рабочие ограничения.

В целом, возможные сложности в работе с термопарами хорошо изучены и имеют различные способы решения. Благодаря надежности, точности, широкому рабочему диапазону температур устройства очень распространены. Применение определяется их техническими характеристиками и особенностями, а для некоторых систем термопары — единственно возможный вариант. Существующая классификация, а также многочисленные исследования и опыт эксплуатации дают обширную информацию о различных типах устройств, что облегчает их выбор и использование.

Какой тип термопар выбрать

В промышленном оборудовании термопары используются крайне часто для более точного контроля этапов производства товара. В то время пока вы рассматриваете какую термопару выбрать, рекомендуем заострить свое внимание на следующих характеристиках:

  • Диапазон измерения температур
  • Устойчивость к химическим средам
  • Стойкость к вибрации и механическим воздействиям
  • Совместимость с используемым оборудованием

Как подобрать тип спая термопары

У термопар имеется три типа спая: изолированный, неизолированный или открытый.

Типы спаев.jpg

На конце датчика с неизолированным переходом провода термопары прикреплены к стенке датчика с внутренней стороны. Благодаря этому достигается отличная теплопередача снаружи через стенку оболочки к спаю термопары. В изолированном типе спай термопары отделен от стенки оболочки. Время отклика меньше, чем у неизолированного типа, но изолированный обеспечивает изоляцию от электричества.

Читайте так же:
Тепловое действие тока примеры из жизни 1

Термопара в стиле открытого спая выступает из конца оболочки и подвержена воздействию среды которая ее окружает. Этот тип обеспечивает лучшее время отклика, но его можно эксплуатировать только для некоррозионных и негерметичных случаев.

Неизолированный спай используют для замера температур агрессивных сред, или же для областей применения где характерно высокое давление. Спай неизолированной термопары приварен к защитной оболочке, благодаря чему достигается более быстрый отклик, чем при эксплуатации спая изолированного типа.

Изолированный спай отлично себя показывает в измерениях температур в агрессивных средах, где рекомендуется иметь термопару, которая электрически изолирована от оболочки и экранированную ею. Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (оксид магния).

Открытый переход рекомендуется для измерения статических или текущих температур некоррозионных газов, где понадобится быстрое время отклика. Соединение выходит за пределы защитной оболочки из металла, в следствии чего получается более точный и быстрый отклик. Изоляция оболочки герметична в соединительных местах, благодаря чему исключается любое проникновение влаги или газа, которое могло бы привести к ошибкам.

Автономный прибор на аккумуляторе

Кому часто приходиться работать «в поле» знают, что наличие розетки, куда можно подключить стационарный паяльник, далеко не всегда имеет место. Следовательно, нелишним будет иметь в запасе автономный его налог. Конечно, производить пайку, требующую мощной модели, не получится, но большинство работ всё же выполнить такой микропаяльник способен. Поэтому вполне целесообразно сделать аккумуляторный паяльник своими руками, чтобы упростить работу в ряде случаев.

Почти все детали, входящие в состав беспроводной модели паяльника, найдутся почти в каждом доме. Поэтому перед началом работы нужно подготовить:

    Аккумулятор на 12–14 В или батарейки. Подойдёт от старого электроинструмента или от ноутбука.
  • Медная проволока диаметром 2 мм и длиной около 6 см.
  • Разного диаметра (1, 3, 8 мм) термостойкие трубки. Можно взять из старой электротехники.
  • Проволока из нихрома диаметром около 0,3 мм. Подойдёт от сломанного фена.
  • Телескопическая антенна от радиоприёмника.
  • Кусочек толстой медной проволоки для жала диаметром 3,8 мм.
  • Провода для подключений.
  • Трубка из материала с низкой теплопроводностью для корпуса.

Когда всё готово, можно приступать непосредственно к сборке паяльника. И для начала нужно сделать нагревающий элемент: нихромовую нить необходимо намотать на подготовленную медную проволоку диаметром 2 мм в виде спирали. При этом длину придётся определять опытным путём. Так, нагрев спирали должен достигать температуры от 300 до 450 градусов Цельсия.

Теперь на эту же проволоку нужно надеть кусочек термостойкой трубки и уже на неё намотать отмеренную нихромовую нить. На её концы одеваются трубки меньшего размера, после чего на всю получившуюся конструкцию надевают трубку самого большого диаметра. Теперь медную проволоку, находящуюся внутри, можно аккуратно вынуть.

Полученный нагревательный элемент остаётся поместить в отрезанный подходящего размера кусочек антенны. Сюда же вставляется жало и закрепляется с помощью самореза.

В общем-то, вся основа уже готова. Остаётся лишь припаять к спирали провода для питания и поместить всё в корпус.

Для того чтобы предотвратить возгорание, между трубкой с нагревающим элементом и корпусом необходимо вставить кусочек какого-либо негорючего материала.

В итоге получился дешёвый, надёжный и удобный инструмент из подручных средств для пайки в полевых условиях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector