Teres-1t.ru

Инженерные решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы диода при прямом и обратном включении

Устройство и принцип работы диода при прямом и обратном включении

Диоды

Диоды – самые простые полупроводники с двумя электродами, проводящие ток в одном направлении.

Они способны стабилизировать, выпрямлять, модулировать, ограничивать, преобразовать ток, поэтому установлены почти во всех бытовых электроприборах.

Основные характеристики диода: постоянный прямой и обратный электроток, прямое и обратное напряжение, прямое и обратное сопротивление, их максимально допустимые значения.

При монтаже в любом устройстве учитываются максимально допустимые значения параметров.

Эксперимент

Оборудование

Оборудование, используемое в лабораторной работе: вритуальный лабораторный стенд, блок No 1 (схемы А1–А4); комбинированный прибор «Сура», мультиметры; соединительные провода.

Порядок выполнения работы

Изучить схемы включения полупроводниковых приборов А1–А4 (рис. 1.3–1.6) для снятия вольт-амперных характеристик ВАХ диода и стабилитрона.

Ознакомиться с устройством лабораторного стенда, найти на стенде блок №1 и схемы А1–А4.

Порядок выполнения задания №1 «Исследование полупроводникового диода»

Экспериментальное получение прямой ветви ВАХ диода (I_ <пр>= f(U_<пр>)) с использованием схемы A1, представленной на рис. 1.3.
  1. Установить напряжение источника питания на 5 В
  2. Выставить значение потенциометра (R1) на максимум.
  3. Включить установку
  4. Внимательно изучить схему

Рис. 1.3Рис. 1.3

Экспериментальное получение обратной ветви ВАХ диода (I_ <обр>= f(U_<обр>)) с использованием схемы А2, представленной на рис. 1.4.
  1. Установить напряжение блока питания 30 В.
  2. Выставить значение потенциометра (R2) на максимум
  3. Внимательно изучить схему установки

Рис. 1.4Рис. 1.4

По данным табл. 1.1 и 1.2 построить ВАХ диода.

По ВАХ или таблицам определить:
  1. Статическое сопротивление диода в прямом включении (R_<ст.пр>=frac>>) при U пр = 0,4 В и U пр = 0,1 В.
  2. Динамическое сопротивление диода в прямом включении (R_<дин.пр>=frac>>) на начальном участке ВАХ ( U пр =0 В и U пр = 0,1 В ) и на участке насыщения ВАХ ( U пр = 0,4 В и U пр = 0,45 В ).
  3. Статическое сопротивление диода в обратном включении (R_<ст.обр>=frac>>) при U обр = 5 В и U обр = 25 В.
  4. Динамическое сопротивление диода в обратном включении (R_<дин.обр>=frac>>) на начальном участке ВАХ ( U пр =0 В и U пр = 5 В ) и на участке насыщения ВАХ ( U пр = 20 В и U пр = 25 В ).

Порядок выполнения задания No2 «Исследование полупроводникового стабилитрона»

Экспериментальное получение прямой ветви ВАХ стабилитрона (I_ <пр>= f(U_<пр>)) с использованием схемы A3, представленной на рис. 1.5.
  1. Установить напряжение источника питания на 5 В
  2. Выставить значение потенциометра (R5) на максимум.
  3. Включить установку
  4. Внимательно изучить схему

Рис. 1.5Рис. 1.5

Экспериментальное получение обратной ветви ВАХ стабилитрона (I_ <обр>= f(U_<обр>)) с использованием схемы А4, представленной на рис. 1.6.
  1. Установить напряжение блока питания 30 В.
  2. Выставить значение потенциометра (R7) на максимум
  3. Внимательно изучить схему установки

Рис. 1.6Рис. 1.6

Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

PN переход — основа полупроводниковой электроники

В этой статье мы узнаем об одной из самых важных концепций полупроводниковой электроники, а именно о PN-переходе. Когда говорят о полупроводниковых устройствах, таких как диоды, транзисторы и другие, в основе этого лежит PN переход. Немногие полупроводниковые устройства, такие как, например, фотопроводники, обычно формируются путем легирования примесей одного типа. Но это ограниченный сценарий, и для большинства полупроводниковых устройств требуются оба типа легирования.

PN-переход в основном формируется путем введения (так называемого легирования) акцепторных примесей на одной стороне полупроводникового кристалла, в то время как другая сторона легирована донорными примесями. Интерфейс между этими двумя областями называется PN-переходом.

Полезные статьи:

Основы полупроводниковой электроники

Электропроводность полупроводника, например кремния или германия, зависит от концентрации электрических носителей в зоне проводимости. Свойства проводимости зависят от количества примесей, присутствующих в процессе легирования.

Проводимость кремния увеличивается в 10 3 при комнатной температуре за счет добавления 1 атома бора на 10 5 атомов кремния.

Полупроводник N-типа создается путем легирования кристалла кремния пятивалентной примесью, такой как сурьма, а полупроводник P-типа формируется путем легирования кристалла кремния трехвалентной примесью, такой как бор, в крошечной концентрации.

И сурьма, и бор являются основными полупроводниковыми примесями, используемыми в процессе легирования; поэтому их называют «металлоидами». По отдельности полупроводники N-типа и P-типа электрически нейтральны.

Как образуется PN-переход?

PN-переход создается в отдельном кристалле полупроводника путем легирования одной стороны кристалла атомами акцепторной примеси, создавая его как P-тип, а также легирования противоположной стороны атомами донорной примеси, создавая его как N-тип. Область, где сходятся P-тип и N-тип, называется PN-переходом.

В этой области электроны в материале N-типа рассеивают переход и объединяются с дырками в материале P-типа. Область материала P-типа, которая находится рядом с переходом в полупроводнике, принимает отрицательный заряд по той причине, что электроны притягиваются дырками.

Когда электроны уходят из области N-типа, он принимает положительный заряд. Следовательно, на стыке существует склонность свободных электронов диффундировать в область P-типа, а дырок — в область N-типа, и этот процесс называется диффузией.

Тонкий слой, зажатый между этими двумя областями, обедненный основными носителями, называется областью истощения. Состояние равновесия PN-перехода определяется как состояние, в котором PN-переход остается без приложенного к нему внешнего электрического потенциала.

Это также может быть дополнительно определено как состояние смещения нулевого напряжения. Ширина обедненной области невероятно мала, обычно несколько тысяч миллиметров, ток через диод может не течь.

PN-переход при приложении потенциала

Отмечаются разные свойства в зависимости от ширины области истощения. Если на таком расстоянии приложен положительный потенциал, область типа P становится положительной, и, следовательно, тип N становится отрицательным, дырки перемещаются в сторону отрицательного напряжения.

В равной степени электроны движутся к положительному напряжению и перепрыгивают через слой обеднения. Плотность заряда P-типа в обедненной области укомплектована отрицательно заряженными акцепторными ионами, в результате чего плотность заряда N-типа становится положительной.

Потенциальный барьер представляет собой перегородку носителей заряда в середине PN-перехода. Этот потенциальный барьер должен преодолеваться за счет внешнего источника электрического потенциала, чтобы PN-переход проводил электрический ток.

Формирование перехода и потенциального барьера в полупроводниковом диоде происходит на протяжении всего производственного процесса полупроводникового диода с PN переходом. Степень потенциального барьера может зависеть от материалов, используемых при производстве диодов с PN переходом.

Полупроводниковый диод с кремниевым PN переходом имеет превосходную величину потенциального барьера, чем германиевые диоды.

PN переход

PN-переход создается путем вставки как P-типа, так и N-типа в один и тот же полупроводниковый кристалл. Большинство носителей заряда в P-типе — это положительно заряженные дырки, а в N-типе — отрицательно заряженные электроны.

Общий заряд с обеих сторон PN-перехода должен быть одинаковым и противоположным, чтобы поддерживать состояние нейтрального заряда вокруг перехода из-за пары электрон-дырка. Слой между P-типом и N-типом, где носители заряда дублируются несколько раз, отмечен как область истощения.

В состоянии равновесия на PN-переходе отсутствует проводимость. Проводимость PN-перехода включает диффузию основных носителей заряда и дрейф неосновных носителей заряда. Проведение электрического тока в PN-переходе физически связано как с зоной проводимости, так и с валентной зоной.

После подключения внешней батареи поток электронов происходит в зоне проводимости, а поток дырок в валентной.

В состоянии равновесия смещения при нулевом напряжении меньшая концентрация дырок и электронов будет дрейфовать просто под влиянием электрического поля E. Диффузия основных носителей заряда должна пересечь потенциальный барьер VB PN-перехода, образованного в результате истощения.

Это должно означать, что основные носители заряда N-типа и P-типа должны по крайней мере достичь энергии qVB электрон-вольт (эВ), прежде чем преодолеют барьер и диффундируют в область P-типа или N-типа.

Сдвиг электронов от N-стороны PN-перехода к дыркам, аннигилированным на P-стороне PN-перехода, создает напряжение потенциального барьера. Значение барьерного напряжения близко к 0,6–0,7 В в кремнии, 0,3 В в германии и варьируется в зависимости от уровней легирования в различных полупроводниках.

Блоки полупроводников P-типа и N-типа в контакте друг с другом не имеют эксплуатационных свойств. Внешний источник напряжения должен пересечь потенциальный барьер, чтобы PN-переход проводил электричество. Если источник потенциала подключен таким образом, что положительный вывод подключен к стороне P, а отрицательный вывод подключен к стороне N.

Отрицательный вывод обеспечивает электронам N-типа диффузию в направлении обедненного слоя. В равной степени положительный вывод удаляет электроны в P-типе, создавая дыры, которые диффундируют к области истощения.

Если аккумуляторная батарея имеют достаточную мощность, чтобы преодолеть барьерное напряжение, тогда большинство носителей заряда от N-типа и P-типа объединяются и истощают переход. В результате большее количество носителей заряда воспроизводится и течет в сторону обедненной области, пока приложенный потенциал превышает потенциальный барьер.

Таким образом, основной ток заряда проходит по направлению к переходу. Во время этого подхода, когда ток проходит благодаря основным носителям заряда, PN-переход считается смещенным в прямом направлении.

Если клеммы батареи перевернуты, то большинство носителей заряда N-типа притягиваются к положительной клемме от PN-перехода, а отверстия притягиваются к отрицательной клемме вдали от PN-перехода.

Ширина обедненного слоя увеличивается с приложенным потенциалом, в результате рекомбинация носителей заряда в обедненном слое не происходит. Следовательно, не происходит проведения электрического тока. При таком подходе считается, что PN-переход имеет обратное смещение.

Встроенный потенциал соединения PN

Основные носители заряда в области N-типа (электроны) могут пересекать переход, чтобы рекомбинировать с основными носителями заряда в области P-типа (дырками). В результате отрицательный статический объемный заряд накапливается в области P-типа, т.к атомы трехвалентной примеси бора имеют статический отрицательный заряд. Они высвобождают положительно заряженную дырку в валентной зоне.

А в области N-типа по схожим причинам образуется положительный объемный заряд, который называется зоной объемного заряда или зоной истощения. Поскольку в этом небольшом объеме имеется мощное электрическое поле, плотность свободных носителей заряда незначительна в состоянии теплового равновесия.

Если полупроводники P-типа и N-типа приближаются, возможный потенциальный барьер возникает в обедненном слое. Фактически, статические объемные заряды накапливаются на границах PN-перехода, положительные заряды в области N-типа и отрицательные заряды в области P-типа. Они создают электрическое поле в диапазоне от N-типа до P-типа, что предотвращает диффузия и добавленная рекомбинация электронов и дырок.

Диффузия останавливается образованием внутреннего электрического поля. В результате существования этого двойного слоя зарядов по обе стороны от PN-перехода, потенциальный барьер резко меняется в пределах зоны истощения, и разность потенциалов Vd, называемая диффузионным потенциалом или встроенным потенциалом, достигает значимых значений.

Электростатический потенциал постоянен по всему кристаллу вместе с зоной пространственного заряда, поскольку учитывает не только электрическое поле, но и концентрацию носителей заряда. Встроенный потенциал из-за концентрации носителей заряда точно компенсирует электростатический потенциал.

Встроенный потенциал (диффузионный) пропорционален разнице энергий Ферми двух неограниченных полупроводников:

  • E — напряжение перехода нулевого смещения
  • (kT / q) тепловое напряжение 26 мВ при комнатной температуре.
  • N A и N B — примесные концентрации акцепторных и донорных атомов.
  • n — собственная концентрация.

Встроенный потенциал или потенциал перехода полупроводника равен потенциалу в обедненной области в состоянии теплового равновесия. Поскольку тепловое равновесие подразумевает, что энергия Ферми постоянна во всем устройстве PN-диода.

Таким образом, энергии Ферми зоны проводимости и валентной зоны смещены вверх или вниз и демонстрируют плавное отклонение в области обедненного слоя. В результате существует разность электростатической потенциальной энергии, показывающая между областями P-типа и N-типа, равная qV d.

Внешний потенциал, необходимый для преодоления потенциала перехода, зависит от рабочей температуры, а также от типа полупроводника. Даже если к полупроводнику не приложен внешний потенциал, существует некоторый барьерный потенциал из-за электронно-дырочной пары.

PN-переход сформирован на отдельном полупроводнике, а электрические контакты проложены вокруг поверхности полупроводника, чтобы обеспечить электрическое соединение для внешнего источника питания. В результате конечное устройство называется диодом с PN переходом или сигнальным диодом.

Стойкость трансформатора тока к механическим и тепловым воздействиям

оплавленный ТТ

Стойкость трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Ток электродинамической стойкости

Ток электродинамической стойкости IД равен наибольшей амплитуде тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без повреждений, препятствующих его дальнейшей исправной работе.

Ток I Д характеризует способность трансформатора тока противостоять механическим (электродинамическим) воздействиям тока короткого замыкания.

Электродинамическая стойкость может характеризоваться также кратностью KД, представляющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока.

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока .

Ток термической стойкости

Ток термической стойкости I равен наибольшему действующему значению тока короткого замыкания за промежуток tт, которое трансформатор тока выдерживает в течение всего промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания (см. ниже), и без повреждений, препятствующих его дальнейшей работе.

Термическая стойкость характеризует способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания.

Для суждения о термической стойкости трансформатора тока необходимо знать не только значения тока, проходящего через трансформатор, но и его длительность или, иначе говоря, знать общее количество выделенной теплоты, которое пропорционально произведению квадрата тока ItT и длительности его tT. Это время, в свою очередь, зависит от параметров сети, в которой установлен трансформатор тока, и изменяется от одной до нескольких секунд.

Термическая стойкость может характеризоваться кратностью КТ тока термической стойкости, представляющей собой отношение тока термической стойкости к действующему значению номинального первичного тока.

В соответствии с ГОСТ 7746—78 для отечественных трансформаторов тока установлены следующие токи термической стойкости:

  • односекундный I или двухсекундный I (или кратность их K и K по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения 330 кВ и выше;
  • односекундный I или трехсекундный I (или кратность их K и K по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения до 220 кВ включительно.

Между токами электродинамической и термической стойкости должны быть следующие соотношения:

для трансформаторов тока на номинальные напряжения 330 кВ и выше

Стойкость трансформатора тока к механическим и тепловым воздействиям

для трансформаторов тока на номинальные напряжения до 220 кВ

Стойкость трансформатора тока к механическим и тепловым воздействиям

Температурные режимы

Температура токоведущих частей трансформаторов тока при токе термической стойкости не должна превышать:

  • 200 °C для токоведущих частей из алюминия;
  • 250 °C для токоведущих частей из меди и ее сплавов, соприкасающихся с органической изоляцией или маслом;
  • 300 °С для токоведущих частей из меди и ее сплавов, не соприкасающихся с органической изоляцией или маслом.

При определении указанных значений температуры следует исходить из начальных ее значений, соответствующих длительной работе трансформатора тока при номинальном токе.

Значения токов электродинамической и термической стойкости трансформаторов тока государственным стандартом не нормируются. Однако они должны соответствовать электродинамической и термической стойкости других аппаратов высокого напряжения, устанавливаемых в одной цепи с трансформатором тока. В табл. 1-2 приведены данные динамической и термической стойкости отечественных трансформаторов тока.

Таблица 1-2. Данные электродинамической и термической стойкости некоторых типов отечественных трансформаторов тока

Таблица 1-2

Примечание. Электродинамическая и термическая стойкость зависит от механической прочности изоляционных и токоведущих частей, а также от поперечного сечения последних.

Порядок работ

Теперь рассмотрим процесс создания самодельного термогенератора в деталях:

  1. Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
  2. Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
  3. Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
  4. Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
  5. Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.

готовый генератор

Походный генератор электричества

Изготовление преобразователя

В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).

Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.

Рассмотрим два варианта.

Вариант 1

элементы термогенератора

Проще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.

Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.

Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.

На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.

К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.

К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.

Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.

Вариант 2

Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».

К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.

генератор тепла

Простейший походный термогенератор

Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).

Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.

Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.

Вариация на тему…

Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.

На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.

На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.

подключение радиатора отопленияБатареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы — однотрубной или двухтрубной. Схемы подключения радиаторов отопления и советы по месту их установке — читайте внимательно.

Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены в этой статье.

Полевики с обособленным затвором

Эти устройства часто используются как полупроводниковые управляющиеся ключи. Как правило, они функционируют в режиме ключа. Есть 2 положения — включить и выключить 3 названия:

  1. МДП, что означает присутствие в устройстве диэлектрического материала, полупроводника и металла.
  2. МОП. В него входит окислительный элемент, полупроводник и металл.
  3. МОФСЕТ:metal-oxide-semiconductor.

Все перечисленное — только варианты одного и того же наименования. Окислительный, или диэлектрический элемент — это, по сути, изолятор затвора. Он находится между самим затвором и n-участком. Это пространство белого цвета, с точечками, состоящее из кремниевого диоксида.

Диэлектрик не допускает электрического контакта подложки и затворного электрода. Он функционирует не так, как p-n переход, по принципу расширения канального перекрытия и перехода. Устройство действует за счёт смены концентрации полупроводниковых переносчиков заряда под влиянием внешнего электрополя.

Со встроенным

Принцип действия такого прибора аналогичен полевому транзистору с управлением от p-n перехода при нулевом напряжении затвора. Ток при этом течёт через ключ.

Транзисторы с внутренним каналом

Возле истока и стока есть 2 области с большим количеством заряженных примесей, имеющих повышенную проводимость. Здесь подложкой является p-основание.

Кристалл соединяется с истоком, поэтому на большей части условных графиков он так и изображен. Когда напряжение на затворе повышается, в канале появляется поперечное электрополе, отталкивающее Электроны. Происходит закрытие канала, когда достигается порог Uзи.

Когда подается отрицательное напряжение затвора — истока, стоковая сила тока уменьшается. Транзистор закрывается. Это называется режимом обеднения. Если же подаётся напряжение со знаком «+», на затворе и истоке осуществляется обратное: за счет притягивания электронов возрастает сила тока. Это явление именуют режимом обогащения.

Все описанное подходит к транзисторам типа n, с внутренним каналом. В случае с p происходит замена электронов так называемыми дырками, и происходит изменение полярности напряжения на другой знак.

С индуктивным каналом

В таких транзисторах не протекает ток, если нет напряжения затвора. Если сказать точнее, ток очень небольшой, поскольку он является обратным от подложки — к высоко легированным элементам стока и истока.

Если напряжение есть, мы имеем дело с вариантом канала индукции, где под влиянием поля заряды со знаком «-» попадают на территорию затвора. Это означает появление электронного коридора между истоком и стоком. При появлении канала происходит открытие транзистора и протекание через него электричества.

Приведем пример практического применения высокого сопротивления выхода. Устройства с такими свойствами довольно популярны. Это согласующие приборы, которыми проводится подключение электроакустики — гитар с пьезозвукоснимающими приборами и электрических гитар с электромагнитными снимателями звука, к входам с маленькими сопротивлениями

От невысокого сопротивления может произойти просадка сигнала выхода. Его форма может меняться в разных пределах, согласно частоте сигнала. Это можно предотвратить введением каскада невысокого сопротивления входа. Таким способом удобно подключаются электрогитары к линейным входам компьютерных видеокарт. Это делает звук более ярким, а тембр — насыщенным.

голоса
Рейтинг статьи
Читайте так же:
Выключатель для теплого пола как выбрать
Ссылка на основную публикацию
Adblock
detector