Teres-1t.ru

Инженерные решения
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плотность тока; что это такое и в чем измеряется

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Формулировка закона Джоуля – Ленца в дифференциальной форме

Плотность тепловой мощности тока (w) (или удельное количество тепла или удельная мощность тепловыделения) равна произведению квадрата плотности тока (j) на удельное сопротивление проводника (\rho). В математическом виде закон Джоуля — Ленца в дифференциальной форме запишем как:

\[w=\rho j^2\left(4\right),\]

где w=\frac{Q}{\Delta V\Delta t}— тепло, которое выделяется в единице объема проводника в единицу времени.

В дифференциальной форме (4) закон Джоуля — Ленца не зависит от рода сил, которые вызывают ток, следовательно, это наиболее общий закон. Если сила, действующая на заряженные частицы, имеет только электрическую природу, то выражение (4) можно представить как:

\[w=\overline{j}\overline{E}=\sigma E^2\left(5\right),\]

где \sigma— удельная проводимость вещества, \overline{E}— вектор напряженности в данной точке поля.

Расчет сечения провода

Площадь, образованную срезом токоведущей жилы, называют сечение кабеля. Чаще всего оно имеет круглую форму, состоит из одной или нескольких проволочек. Его подбирают исходя из предполагаемой нагрузки, используя для этого специальные таблицы. Опытные электрики часто опираются на ориентировочные значения: для розеток достаточно кабеля 1,5-2,5 квадратных миллиметра, на освещение хватит 1-1,5. Однако такое предположение не всегда себя оправдывает. Если в помещении предусматривается установка большого количества мощной техники, потребуется сделать несложный расчет.

Какие провода лучше использовать для проводки в квартире. Большая сравнительная статья тут.

Основным показателем, влияющим на искомую величину, является токовая нагрузка. Она представляет собой ток медного провода (І), который пройдет по нему и не вызовет нагревания выше 60 градусов. Чтобы его найти, необходимо просуммировать мощности всех электроприборов (Р), которые будут установлены в помещении. Дальнейший расчет опирается на простейшие формулы из курса физики:

  • Для сети 220 В (U): I=(P*KИ)/(U*cos φ), в формуле Ки – коэффициент, учитывающий возможность одновременного включения всех электроприборов в доме (принимают равным 0,75); cos φ ‑ для бытовой сети принимают 1.
  • Для сети 380 В (U): I=P/(1,73*U*cos φ).
Читайте так же:
Смешанный ток в теплообменнике это

Единица измерения силы ‑ один ампер. Полученный результат используют для подбора параметров в специальных таблицах.

Зачастую расчетное значение не совпадает с табличным. Тогда его увеличивают до ближайшего большего.

Работая с таблицами, следует обратить внимание, что на выбор провода влияет его месторасположение (земля или воздух), материал (медь или алюминий), количество жил (одна или больше).

Маркировка проводов

Чтобы не потеряться в многообразии кабельной продукции, рекомендуется ознакомиться с ее маркировкой. В буквах и цифрах для специалиста заключена важная информация, позволяющая правильно подобрать и использовать элемент. Для проводов ПВХ (с поливинилхлоридной) или с резиновой изоляцией наличие первой буквы А говорит о материале (А – алюминий, нет буквы – медь). Далее идет буква Ш (шнур) или П (провод). Материал изоляции указывают при помощи таких сокращений:

  • В ‑ поливинилхлорид;
  • Р – резина;
  • Н – неритовая резина;
  • П – полиэтилен.

Дополнительно может присутствовать маркировка, помогающая установить качество провода: П – плоский, Г – гибкий, С – соединительный. Для кабелей марки ПВ часто указывают цифрами (1, 2, 4) степень гибкости. Чем больше число, тем провод гибче. Также часто присутствует информация о количестве жил, их площади. Рекомендуется при любом сомнении проконсультироваться со специалистом. Также нельзя забывать о таблицах, в которых приведены граничные значения применения медного провода по току. Пренебрежение элементарными правилами приводит к некорректной работе оборудования, часто становится причиной пожара.

§ 2.2. Плотность тока. Сила тока

  • Количественно электрический ток характеризуется векторной величиной — плотностью электрического тока и скалярной величиной — силой тока I.

Плотность тока

Введем понятие плотности электрического тока для наиболее простого случая упорядоченного движения одинаковых заряженных частиц. Выделим в среде, в которой существует ток, очень малый объем в форме прямого цилиндра с площадью основания ΔS (рис. 2.5).

Читайте так же:
Основные элементы электрической цепи тепловозов постоянного тока

Цилиндр ориентирован так, что его основания перпендикулярны скорости упорядоченного движения частиц .

Под скоростью упорядоченного движения частиц в малом объеме ΔV (но содержащем много частиц) мы понимаем отношение геометрической суммы скоростей частиц к числу их в этом объеме:

Средняя скорость хаотически движущихся частиц равна нулю.

Высота цилиндра пусть равна пути υΔt, проходимому частицами за время Δt. Здесь υ — модуль скорости упорядоченного движения частиц. Тогда все заряженные частицы, находящиеся внутри цилиндра, за время Δt пересекут правое основание цилиндра с площадью ΔS. Если концентрация заряженных частиц в среде n, то за время Δt через сечение с площадью ΔS будет перенесен заряд Δq = qΔtΔS, где q — заряд отдельной частицы.

Вектором плотности тока называют вектор, направление которого совпадает с направлением скорости упорядоченного движения положительно заряженных частиц, а модуль равен отношению заряда, переносимого за время Δt через сечение площадью ΔS, расположенное перпендикулярно к скорости движения, к произведению ΔS • Δt:

где ρ = qn — пространственная плотность электрического заряда.

В случае движения отрицательно заряженных частиц (q < 0) векторы и направлены противоположно друг другу. Если среда однородна, то модуль плотности тока численно равен электрическому заряду, переносимому в единицу времени через единичную площадку, перпендикулярную скорости .

Сила тока

Вектор плотности тока представляет собой локальную (или дифференциальную) характеристику тока: он определяет переносимый заряд через малую площадку в проводящей среде и направление движения заряженных частиц. Введем теперь полную для всего сечения характеристику тока — силу тока*.

Силой тока называют отношение заряда Δq, переносимого через поперечное сечение проводника площадью S за промежуток времени Δt, к этому промежутку:

Формула (2.2.3) выражает среднее за время Δt значение силы тока.

Сила тока в данный момент — мгновенная сила тока — представляет собой предел отношения электрического заряда Δq, прошедшего через поперечное сечение проводника за малый промежуток времени Δt, к этому промежутку при Δt, стремящемуся к нулю:

Если за любые равные между собой промежутки времени через поперечное сечение проводника проходят одинаковые заряды, т. е. если сила тока не изменяется с течением времени, то электрический ток называют постоянным. Сила постоянного тока численно равна заряду, проходящему через поперечное сечение проводника за 1 с:

Сила тока, подобно заряду, может быть как положительной, так и отрицательной. Знак силы тока зависит от того, какое из направлений вдоль проводника принято за положительное. Сила тока I > 0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I < 0.

Сила тока однозначно выражается через плотность тока. В частном случае при равномерном распределении плотности тока по сечению проводника сила тока

Читайте так же:
Схема включения теплового реле через трансформаторы тока

где jn = jcos α — проекция вектора плотности тока на нормаль к плоскости сечения проводника, а S — площадь этого сечения (рис. 2.6).

Направление нормали совпадает с условно выбранным направлением обхода. Знак силы тока определяется знаком косинуса угла α между направлением вектора плотности тока и направлением нормали . Если направления векторов и совпадают, то α = 0 и сила тока

выражается положительным числом.

Таким образом, сила тока в проводнике прямо пропорциональна заряду, переносимому каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения проводника.

Единицы силы тока и плотности тока

В абсолютной системе единиц за единицу силы тока принимается сила постоянного тока, при которой через поперечное сечение проводника в каждую секунду протекает заряд, равный одной абсолютной электростатической единице заряда:

Единица плотности тока в этой системе единиц равна:

В Международной системе единиц единица силы тока является не производной, а основной. Эту единицу, называемую ампером (А), устанавливают на основе магнитного взаимодействия токов (см. § 4.7).

В предыдущей главе единица заряда — кулон была введена как произведение 1 А на 1 с: 1 Кл = 1 А • с. Отсюда следует, что

Так как 1 Кл = 3 • 10 9 СГСЭq, то

Единица плотности тока в СИ

Скорость упорядоченного движения электронов в металлическом проводнике

Найдем скорость упорядоченного перемещения электронов в металлическом проводнике. Согласно формуле (2.2.1)

Для металлического проводника заряд |q|, переносимый каждой частицей, — это заряд электрона: |q| = е. Следовательно,

Число электронов в 1 м 3 меди (объемная концентрация электронов п) равно числу атомов в этом объеме, так как один из валентных электронов каждого атома меди коллективизирован и является свободным. Поэтому

где ρ = 8900 кг/м 3 — плотность меди, М = 0,0635 кг/моль — ее молярная масса, а N = 6,02 • 10 23 моль -1 — постоянная Авогадро.

Подставляя в формулу (2.2.9) выражение для объемной концентрации электронов n, получим:

Если для плотности тока j взять максимально допустимое ее значение для медного провода j = 10 7 А/м 2 , то для скорости упорядоченного движения электронов в медном проводнике получим:

Скорость направленного движения электронов при прохождении электрического тока по медному проводнику оказалась неожиданно малой. Она намного меньше средней скорости их теплового движения. Неожиданно потому, что при повороте выключателя лампочка вспыхивает сразу, а ведь при такой скорости электроны не успеют дойти от выключателя до лампочки. В следующем параграфе мы увидим, в чем здесь дело.

* Термин сила тока нельзя считать удачным, так как слово «сила», применяемое к току, не имеет никакого отношения к понятию «сила» в механике. Но термин «сила тока» был введен давно и утвердился в науке.

Объемная плотность тепловой мощности тока в проводнике равна

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

Читайте так же:
Провод какого сечения использовать для теплого пола

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

Читайте так же:
Удельная тепловая мощность тока единица измерения

закон джоуля-ленца

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Использование закона Джоуля-Ленца для передачи электроэнергии на расстояние

высоковольтные линии электропередач

Когда происходит передача электричества на расстояние, появляется проблема потери на линиях передач. Закон показывает количество тепла, которое выделяется проводником при проходе тока.

ЛЭП используются предприятиями и городами, следственно необходимо больше мощности и больше тока.

Количество теплоты связано с сопротивлением тока и проводника, для того чтобы избежать нагрева, необходимо уменьшить количество тепла.

Не всегда можно использовать сечение провода, это дорого стоит из-за цены меди и веса кабелей, следовательно, увеличивается стоимость несущей конструкции.

На рисунке показаны высоковольтные линии электропередач. Это огромные конструкции из металла, создающиеся для поднятия кабеля на высоту, безопасную для людей на земле, чтобы избежать удара током.

Для этого необходимо снизить ток, следовательно, повышается напряжение.

Линии электропередач между городами используют напряжение 220 и 110 кВ, а у того, кто потребляет, понижают до необходимой величины, используя трансформатные подстанции. Или множеством КТП медленно понижая до безопасной величины, например, 6кВ.

То есть ток уменьшится в тысячи раз, но при той же потребляемой мощности. По закону Джоуля-Ленца, теплота в данном случае определится мощностью, которая теряется на кабеле.

Задание. Какой должна быть сила тока, которая течет через обмотку электрического мотора для того, чтобы полезная мощность двигателя (PA) стала максимальной?Какова максимальная полезная мощность? Если двигатель постоянного тока подключен к напряжению U, сопротивление обмотки якоря – R.

Решение. Мощность, которую потребляет электроприбор, идет на нагревание (PQ) и совершение работы (PA):

Мощность, идущую на нагревание можно рассчитать как:

Потребляемую мощность найдем как:

Выразим $P_A$ из (1.1) и используем (1.2) и (1.3):

Для нахождения экстремума функции, которая представлена в выражении (1.4) найдем производную $frac$ и приравняем ее к нулю:

Найдем максимальную полезную мощность,используя выражение (1.4) и Imax:

Формула мощности тока не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Электрические лампочкис мощностями P1 и P2 номинальным напряжением U1=U2 соединяют последовательно (рис.2) и включают в сеть с постоянным напряжением U. Какова мощность, потребляемая первой лампочкой P1 * ).

Решение. Лампочки по условию задачи соединены последовательно, значит сила тока, текущая через лампочки одинакова, а падение напряжения на каждой из лампочек зависит от их сопротивлений. Искомую мощность можно найти как:

Сопротивления лампочек можно найти из данных в условиях номинальных мощностей:

Силу тока можно найти по закону Ома, учитывая, что лампочки соединены последовательно:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector