Teres-1t.ru

Инженерные решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Передача электроэнергии; распространенные способы и альтернативные варианты

Передача электроэнергии — распространенные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Способы передачи электроэнергии

Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.

Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:

Схема передачи переменного электрического напряжения

Принцип работы и объяснение схемы:

  1. В начале схемы находится генератор, вырабатывающий электричество.
  2. От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
  3. После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
  4. От трансформатора напряжение подается потребителю, с существенным занижением.

Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.

Воздушные и кабельные линии

Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.

Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:

  • большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
  • потеря значительной доли мощности с каждым километром;
  • требование подачи большой мощности в начале (от электростанции);
  • вред магнитного поля для человека;
  • большая вероятность повреждения и разрушения от природных катаклизмов;
  • большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.

Воздушные линии

Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:

  1. Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
  2. Линии с напряжением от 1 до 35 кВ считаются средними.
  3. Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
  4. К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
  5. К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.

Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.

Кабельные линии

Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:

  1. Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
  2. Также идет потеря доли напряжения с расстоянием.
  3. Существует опасность механического повреждения или растяжения кабеля.
  4. Есть опасность шагового напряжения при повреждении, особенно в воде.
  5. Очень тяжело найти и устранить повреждение.
Читайте так же:
Как подключить терморегулятор теплого пола через розетку

На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:

  1. Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
  2. Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.

Подобные схемы также делятся на категории.

Схемы в визуальном отображении:

Схемы в визуальном отображении

Разомкнутая схема бывает 3 видов:

  1. Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
  2. Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
  3. Схема магистральной подачи, при которой между двумя источниками находится один потребитель.

Замкнутая схема также бывает 3 видов:

  1. Кольцевая схема с одним источником и потребителем.
  2. Магистральная схема с наличием резервного источника.
  3. Сложная замкнутая схема, для подключения потребителей особого назначения.

Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.

Система передачи сверхвысоковольтного постоянного тока

линии передачи постоянного тока

Система передачи сверхвысоковольтного постоянного тока, построенная с помощью многонациональной компании Сименс передает 6,4 гигаватта почти 2 000 км крупнейшему по численности населению городу Китая и мира Шанхаю на 800 киловольтах (кВ).

В действительности, система передачи сверхвысоковольтного постоянного тока может обеспечить до 10 гигаватт, достаточно для того чтобы привести энергию почти в 20 миллионов китайских домов. И это только начало больших линий электропередач.

Ранее Siemens поставил в Китай первый в мире устройство 1100 кВ, которое может преобразовывать до 13 ГВт, что примерно соответствует мощности 10 атомных электростанций. Если необходимо преодолеть расстояния в несколько тысяч километров, просто нужно построить системы более высокого напряжения — рассуждают технологи по передаче электроэнергии.

Выгоды линий передачи постоянного тока

передача постоянного тока

Также, как предлагают ученые более лучшая передача мощности в системе постоянного тока. Кроме того необходимо меньше материала, делающее электроэнергию более дешевой и более экологичной. Типичная высоковольтная система переменного тока использует 6 проводов, тогда как переменного использует 3, но немножко более мощных провода. Это означает, что системы постоянного тока требуют меньше алюминия для своих проводов, а опоры могут быть меньше с меньшим количеством стали, потому что они имеют меньший вес — не говоря уже о меньших физических затратах при строительстве.

Все эти факторы снижают стоимость линии передачи постоянного тока.

Когда необходимо передать электроэнергию на расстояние 1000 км и более капитальные затраты на систему 800 кВ становятся намного меньше, по сравнению с системой переменного тока считают энергетики.

Читайте так же:
Тепловой поток сила тока

Станции преобразователи могут быть дорогими, в некоторых случаях до 1 миллиарда долларов, но это все же дешевле учитывая многие обстоятельства.

Новые технологии для развивающихся стран

На данный момент наиболее благоприятными местами для передачи постоянного тока являются большие страны, которые способны генерировать большие объемы энергии и должны доставлять ее в города на большие расстояния. Наряду с Китаем и Индией, где в прошлом году была установлена первая очередь системы электропередачи 800 кв мощностью 6000 МВт, потенциальными рынками сбыта являются Бразилия, которая зависит от гидроэнергетики более чем на 75 процентов и уже осуществляет проект. Большая часть гидроэнергии Бразилии вырабатывается в Амазонке на севере, но наибольший спрос имеют города на юго-востоке, такие как Рио-де-Жанейро и Сан-Паулу.

Есть также разработки на линии передачи постоянного тока от ветровых электростанций в Северном море или солнечных батарей в пустыне и независимо от того каковы источники электрической энергии. Однако здесь технические проблемы усугубляются проблемами пересечения юрисдикционных границ и необходимостью заключения соглашений между отдельными правительствами и конкурирующими энергетическими компаниями.

Считается, что будущее высоковольтной передачи постоянного тока находится в развивающемся мире.

Тепловозы маневровые ТЭМ7 и ТЭМ14 выпускаются Людиновским тепловозостроительным заводом. Основной отличительной особенностью их конструкции является восьмиосная экипажная часть. На локомотивах модификаций 7 и 7А устанавливается по одному дизелю. Более современные тепловозы ТЭМ14 оснащаются двумя. Однако мощность у всех этих модификаций одинаковая. Второй дизель на ТЭМ14 устанавливается в основном в целях экономии. Для выполнения некоторых видов маневровых работ вполне достаточно мощности одного дизеля. Второй при этом может быть отключен. Тепловозов ТЭМ14 в парке РЖД пока мало. На 2013 г. маневровыми работами занималось только три единицы такой техники.

маневровый тепловоз массой

Плюс и минус

Сегодня во всём мире растёт интерес к линиям электропередачи на постоянном токе (ЛЭП ПТ), которые в ряде случаев обладают заметными техническими и экономическими преимуществами по отношению к линиям электропередачи переменного тока той же мощности.

Переход на постоянный ток выгоден по многим причинам. Затраты на строительство самих линий снижаются — замена трёх фаз на два полюса позволяет резко сократить стоимость проводов или кабелей. В случае воздушных линий опоры конструктивно проще и легче, а трасса линии — уже. Также заметно снижается расход строительных и конструкционных материалов. Однако преобразовательные подстанции ЛЭП ПТ сложнее и дороже подстанций ЛЭП переменного тока, поскольку содержат много дополнительного оборудования. Это мощные преобразовательные установки со своими системами регулирования, защиты, сигнализации, охлаждения и т. д. Также на подстанциях должны быть синхронные компенсаторы или мощные батареи конденсаторов для компенсации реактивной мощности, потребляемой самими преобразователями. Там же монтируются фильтры высших гармоник, сглаживающие реакторы и другое оборудование.

Точка невозврата

Существует понятие критической длины линии. Это длина, при которой суммарная стоимость решений на постоянном и переменном токе (подстанции плюс линия) одинакова. При длине линии больше критической экономически выгоднее строить ЛЭП ПТ. По данным Всероссийского электротехнического института (ВЭИ), критическая длина воздушной линии, в зависимости от передаваемой мощности и конкретных географических условий, составляет 600-800 км, кабельной — 30-50 км.

Читайте так же:
Какое должно быть сечение провода для теплого пола

В некоторых случаях постоянный ток оказывается безальтернативным вариантом. Например, если нужно соединить две системы переменного тока, работающие асинхронно или имеющие разные частоты (50 и 60 Гц). В таких случаях используют вставки постоянного тока.

Также отметим, что мощность и длина линии переменного тока ограничиваются эффектами статической и динамической неустойчивости, а мощность и длина ЛЭП ПТ — только параметрами преобразовательного оборудования. Более того, постоянный ток облегчает работу системного оператора: передаваемую по ЛЭП ПТ мощность можно регулировать очень быстро и практически от нуля до максимума.

ЛЭП ПТ также снижают вероятность серьёзных системных аварий и облегчают послеаварийное восстановление сетей. Если при повреждении провода одной фазы линия переменного тока отключается целиком, то при повреждении провода одного из полюсов ЛЭП ПТ по проводу другого полюса можно передавать половинную мощность. Земля заменяет повреждённый провод. Подобный режим, допустимый лишь ограниченное время, обычно позволяет сохранить энергоснабжение потребителей первой категории.

Поле для внедрения

В современных крупных городах, где возможности строительства новых воздушных линий ограничены, используются «глубокие вводы» на кабелях постоянного тока. Подводные кабельные линии, работающие на постоянном токе, могут иметь длину до 500 км. Подобные решения на переменном токе невозможны в принципе из-за повышенной реактивной составляющей кабельной линии.

Конечно же, перспективы применения ЛЭП ПТ зависят от общей конфигурации энергосистемы. В 1960-х годах в СССР сложилась такая ситуация, что основные энергетические ресурсы страны размещались за Уралом, а центры электрической нагрузки — в Европейской части страны. Нужно было перебрасывать большие мощности на огромные расстояния. На тот момент уже были отработаны методы разработки и технологии строительства классических ЛЭП ПТ с высоковольтными ртутными и тиристорными преобразователями напряжения.

В середине 1960 гг. в СССР была разработана государственная программа, конечной целью которой было создание сверхмощной (6 ГВт) линии электропередачи постоянного тока Экибастуз — Центр напряжением 1500 кВ (±750 кВ относительно земли). В проекте линии длиной 2400 км (она должна была стать крупнейшей в мире) предполагалось на начальной стадии для преобразования напряжения использовать высоковольтные ртутные вентили.

В 1966 г. Совет Министров СССР выпустил постановление о проведении НИОКР в области создания сверхдлинных ЛЭП постоянного тока. Головным предприятием по разработке комплексного электротехнического оборудования для ЛЭП ПТ напряжением 1500 кВ был назначен Всесоюзный электротехнический институт. В то время ВЭИ занимал лидирующие позиции в стране и мире в области мощных ртутных вентилей и электронных вакуумных устройств.

Однако уже в 1970 г. в связи с быстрым развитием полупроводниковой преобразовательной техники было принято решение прекратить разработку новых мощных ртутных вентилей и в дальнейшем ориентироваться на тиристорные силовые приборы.

Наращивая напряжение

С 1970 по 1980 гг. в стране разрабатывались комплексы электрооборудования для ультравысоковольтных ЛЭП переменного тока напряжением 1150 кВ и постоянного тока 1500 кВ (±750 кВ). Практическая реализация проектов была запущена 30 апреля 1981 г. совместным Постановлением ЦК КПСС и Совета Министров СССР № 412. Это постановление предписывало Министерству энергетики и электрификации СССР построить и ввести в действие в 1981-1990 гг. ЛЭП переменного тока напряжением 1150 кВ Экибастуз — Кокчетав — Кустанай — Челябинск (1272 км), Сургут — Урал (500 км), Итат — Новокузнецк (272 км), Новокузнецк — Западно-Сибирская — Экибастуз (950 км), а также уже упомянутую ЛЭП ПТ Экибастуз — Центр. Её назначение — передача энергии от Экибастузских ГРЭС в энергосистему Центра для покрытия дефицита мощности в этом районе. Кроме того, ставилась задача построить линии электропередачи переменного тока напряжением 500 кВ (с подстанциями) общей протяжённостью около 2 тыс. км, необходимые для распределения электрической энергии от подстанций с напряжениями 1150 и 1500 кВ.

Читайте так же:
Комбинированный автоматический выключатель со встроенным тепловым реле

Проект ЛЭП ПТ Экибастуз — Центр разрабатывали три организации: «Энергосетьпроект» (ведущий проектировщик), ВЭИ (разработчик электротехнического оборудования) и Научно-исследовательский институт постоянного тока (разработчик технических требований к оборудованию).

Согласно проекту, выпрямительная подстанция располагалась в Экибастузе, инверторная — в Тамбове. Для ЛЭП Экибастуз — Центр были разработаны, изготовлены, испытаны и частично поставлены на первую очередь преобразовательных подстанций (одна ветвь мощностью 1500 МВт) уникальные высоковольтные тиристорные вентили, однофазные двухобмоточные преобразовательные трансформаторы мощностью 320 МВА на классы напряжения ±400 и ±750 кВ, линейные реакторы на класс напряжения ±750 кВ, серия унифицированных разрядников, аппаратура систем управления, регулирования, защиты и автоматики ЛЭП и другое электрооборудование.

Ввод линии постоянного тока в эксплуатацию, перенесённый на 1992-1995 гг., не состоялся из-за распада СССР. К 1991 г. была построена воздушная ЛЭП длиной почти 1000 км, на преобразовательных подстанциях начался было монтаж электрооборудования, но вскоре все работы были прекращены. Электрооборудование было разобрано, ЛЭП — демонтирована и сдана в металлолом.

О грандиозном советском проекте сегодня напоминают лишь оставшиеся кое-где отдельные конструкции. Например, в районе Вольска (Саратовская область) гигантские 124-метровые опоры, установленные для пересечения Волги, несут провода 500-киловольтной ЛЭП переменного тока Балаковская АЭС — Курдюм — Фролово.

По данным специалистов ВЭИ, электрооборудование для линий постоянного тока напряжением 1500 кВ, созданное в СССР, опередило зарубежные разработки примерно на 20 лет. Первая ЛЭП подобного класса (±800 кВ) была запущена в эксплуатацию в Китае только в 2010 г.

Технические характеристики

Что касается полных технических данных, то водяной бункер рассчитан на одну тысячу сто литров, запасы песка равны полутора тысячам килограммов, ёмкость масляного бункера равна пяти тысячам литров, скоростной длительный режим равен 11.4 км/ч. Показатель касательной мощности равняется девятистам семидесяти лошадиным силам. Тележечная база колёс – это четыре тысячи миллиметров. Промежуток между шкворнями — 8660 миллиметрам, полная база колёс равна 12660 миллиметрам. Параметры по осевым автосцепкам представлены длиной – 17220 миллиметров, высотой — 4637 миллиметров, шириной – 3120 миллиметров. Габарит 02-Т. Допустимый наименьший радиус кривых равен восьмидесяти метрам. Параметры передаточного отношения равны – 5.06, колёсный диаметр имеет значение – 1050 миллиметров. Нагрузка на рельсовую колею – 20.5 тонн. Конструктивный вес тепловоза ЧМЭ3 с двумя третями топливного и водяного бункера, и запасов песка равен ста двадцати трём тоннам. Показатель максимальной скорости равен девяноста пяти километрам в час. Мощность ТЭД – 6 × 134 киловатт час. Мощность дизельного двигателя равна одной тысяче трёмстам пятидесяти лошадиным силам. Осевую формулу представляет -3О-3О.

Читайте так же:
Устройство теплового реле тока
Технические характеристики тепловоза ЧМЭ3 (Общие сведения)
Передача мощностиэлектрическая постоянного тока
Род службывывозной и маневровый
Тяговая мощность736 (1000)кВт (л.с.)
Конструкционная скорость95км/ч
Сила тяги при трогании с местапри 0,3: 369 (36 900)кН (кгс)
при 0,25: 308 (30 800)кН (кгс)
Длительная скорость11,4км/ч
Сила тяги при длительной скорости230 (23 000)кН (кгс)
Скорость, с которой допускается работа в течении 30 минут9,3км/ч
Сила тяги при скорости 9,3 км/ч280 (28 000)кН (кгс)
Наименьший радиус проходимых кривых80м
Ширина колеи1520мм
Осевая харакетристика3-3
Габарит02-ВМ
Габаритные размеры тепловоза
Длина по осям автосцепок17 220мм
Ширина3150мм
Высота без антенны4630мм
С антенной5240мм
База тележки4000мм
Расстояние между шкворнями тепловозами8660мм
База тепловоза12600мм
Диаметр колес1050мм
Расстояние от головки рельса до кожуха тягового редуктора125мм
Передаточное число тягового редуктора5,06 (76:15)
Количество тележек2
Буксыроликовые с двухрядным сферическим подшипником
Подвеска тягового электродвигателяопорно-освевая
Автосцепные устройстваавтосцепка СА-3 с поглощающим аппаратом Ш-1-Т (Ш-1-ТМ)
Служебная масса тепловоза123±3%т
Масса тепловоза без экипировки114,4±3%т
Удельна масса тепловоза115,1 (84,7)кг/кВт (кг/л.с.)
Нагрузка от колесной пары на рельсы205±3% (20,5±3%)кН (тс)
Запас:
песка1500кг
топлива6000 (5300 для ЧМЭ3Т)л
масла в системе дизеля650л
воды в системе охлаждения1100л
Вместимость запасного бака100л

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Трансформатор формула

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Представлены электропоезда разных серий

ЭТ2М

ЭТ2М (Электропоезд Торжокский 2-й тип, Модернизированный) — серия электропоездов постоянного тока, строившихся с 1999 по 2010 год на Торжокском вагоностроительном заводе.

ЭР2Т

ЭР2Т (Электропоезд Рижский, 2-й тип, исполнение «Т» — рекуперативно-реостатное торможение) — пригородный электропоезд постоянного тока с рекуперативно-реостатным торможением производства Рижского вагоностроительного завода (РВЗ).

ЭД4М

ЭД4М (Электропооезд Демиховский, 4-й тип) — серия российских электропоездов постоянного тока, выпускавшихся с 1996 по 2016 годы на Демиховском машиностроительном заводе (ДМЗ) для железных дорог России и бывшего СССР. Построено 495 составов.

ЭП2Д

ЭП2Д (Электропоезд Пригородный, 2-й тип, Демиховский) — электропоезд постоянного тока производства Демиховского машиностроительного завода (ДМЗ), являющийся модифицированной версией электропоездов ЭД4М 500-х номеров.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector