Что такое инверторный генератор: 7 главных отличий от обычного
Что такое инверторный генератор: 7 главных отличий от обычного
В профессиональной деятельности и в быту для производства сварочных работ применяются инверторные генераторы. Такие аппараты сегодня есть у многих. В этой статье разберем, что значит инверторный генератор.
По сути, это электронный агрегат, преобразующий постоянный ток в переменный. В устройстве инверторного генератора разобраться не сложно: состоит из статора, на нем расположены отмотки и ротора. Последний оснащен несколькими полюсами с электро- или постоянными магнитами. За счет вращения ротора создается магнитное поле, которое пронизывает статорную обмотку. В результате этого в статоре возникает напряжение, вырабатываемое генератором.
Выбор дизельной электростанции: пусковые токи
При выборе дизельной электростанции (ДЭС) в качестве автономного (основного или резервного) источника электроэнергии проектировщика подстерегают несколько подводных камней. Одним из таких «камней» является обеспечение пусковых токов нагрузки потребителя. Неопытный специалист при выборе ДЭС руководствуется, как правило, только расчетной мощностью нагрузки, забывая, что это максимальная усредненная нагрузка на временном интервале 30 мин (интервал указан как характерный для сети напряжением до 1000 В).
Расчетная мощность Рр соответствует такой неизменной токовой нагрузке Iр, которая эквивалентна действительно изменяющейся нагрузке по наиболее тяжелому тепловому действию на элемент системы электроснабжения. Под действительной нагрузкой здесь подразумевается верхняя граница возможных значений усредненной токовой нагрузки. Длительность интервала осреднения принимается равной трем постоянным времени нагрева Т элемента системы электроснабжения, через который передается нагрузка (проводник, кабель, шинопровод). Опыт проектирования и эксплуатации электрических сетей напряжением ниже 1000 В свидетельствует о целесообразности принятия интервала осреднения 30 мин, соответствующего постоянной времени нагрева Т=10 мин. Расчетный ток — это наибольший из средних получасовых токов.
источник
Таким образом, не учитывается такой режим работы, при котором нагрузка потребителя на несколько секунд существенно превышает расчетную мощность. Максимальная кратковременная нагрузка продолжительностью несколько секунд называется пиковой нагрузкой.
Пиковая нагрузка обусловлена запуском электроприемников с большими пусковыми токами, например, асинхронных двигателей. Пусковой ток возникает при начале вращения двигателя и продолжается до достижения номинального скольжения двигателя. Величина пускового тока превышает номинальный ток двигателя в 4…8 раз (см. характеристики двигателей марки А, АИР, RA и т.д.).
Если мощности ДЭС не хватает, чтобы покрыть пиковую нагрузку потребителя, то в результате возникает выход частоты и величины генерируемого напряжения за границы, допустимые для потребителей. В результате, потребитель автоматически отключается от источника питания действием защиты, а ДЭС останавливается. В том случае, если ДЭС, например, предназначена для резервного питания противопожарных устройств, последствия такого отключения могут быть катастрофические.
Чтобы ДЭС обеспечивала пиковую нагрузку, должно выполняться условие
где Pпик.нагр. – пиковая мощность нагрузки;
Рпер.ДЭС – перегрузочная способность ДЭС.
Проблема заключается в том, что в каталогах очень сложно найти информацию о перегрузочной способности дизельных электростанций. Некоторые фирмы-поставщики для всех марок ДЭС пишут, что перегрузка допустима только на 10% в течение часа. При превышении этого значения срабатывает автоматическая защита генератора. Другие фирмы разделяют номинальную мощность ДЭС на основную (PRP – prime power) и аварийную (ESP – Emergency Stand-by Power). Как правило, аварийная мощность превышает основную на те же самые 10%. При этом, перегрузка ДЭС сверх аварийной мощности запрещается.
Что же получается? Если от ДЭС запитан асинхронный двигатель сопоставимой номинальной мощности, то запуститься он не сможет? И чтобы этот двигатель запустился, ДЭС должна его превышать по номинальной мощности в Кпуск/Кпер.ДЭС раз (Кпуск – коэффициент пускового тока двигателя, Кпер.ДЭС – коэффициент перегрузки ДЭС)? Допустим, Кпуск=8, а Кпер.ДЭС=1,1, тогда номинальная мощность ДЭС должна быть в 8/1,1=7,3 раза больше, чем номинальная мощность асинхронного двигателя. При этом загрузка ДЭС при запущенном двигателе составит всего 100%/7,3=13,7%. Между тем, фирмы-изготовители ДЭС регламентируют минимальную загрузку не менее 25…40%.
При работе на малых нагрузках из-за невысокой температуры выхлопных газов смазочное масло, попадающее в камеру сгорания и частично выносимое в коллектор и выхлопной трубопровод, полностью не сгорает, а оседает на их стенках, элементах турбонагнетателя, клапана и т.п., где коксуется. При длительной работе дизеля в таком режиме это коксование приводит к уменьшению сечения соплового аппарата турбонагнетателя и, как следствие, к нарушению нормальной работы дизеля. Более того, при последующих пусках и попадании топлива в выхлопную систему это может привести к взрыву («хлопку»), который часто сопровождается повреждением дизеля.
источник
Что-то несуразица какая-то получается. Зачем изготавливать генератор, который не может обеспечить пуск двигателя при сопоставимой нагрузке, а применение более мощного генератора невозможно из-за ограничений работы двигателя?
В ГОСТ Р 53174-2008 «Установки электрогенераторные с дизельными и газовыми двигателями внутреннего сгорания», п.6.3.10, табл.4 регламентируется мощность ДЭС по отношению к мощности асинхронного короткозамкнутого двигателя.
Электрогенераторные установки трехфазного переменного тока частотой 50 Гц (в ненагруженном состоянии) должны обеспечивать запуск асинхронного короткозамкнутого двигателя с кратностью пускового тока до 7 и мощностью не менее указанной в таблице
Номинальная мощность электрогенераторной установки, кВт
Мощность асинхронного короткозамкнутого двигателя в процентах от номинальной мощности электрогенераторной установки
До 60 включ. 70
100 и 200 60
Св. 200 до 500 включ. 50
» 500 » 1000 » 35
» 1000 Устанавливают в стандартах или ТУ на электрогенераторные установки конкретных типов
Таким образом, мощность ДЭС должна превышать мощность двигателя в 1,4…2,9 раза, а не в 7,3 раза, как рассматривалось выше. Правда есть один нюанс – большинство генераторов изготавливаются за рубежом, где не действуют требования российских нормативных документов, и, следовательно, требования к перегрузке могут быть другими.
Попробуем найти информацию о допускаемой кратковременной перегрузке генераторов различных фирм-изготовителей, отечественных и зарубежных.
Баранчинский электромеханический завод
Генераторы синхронные серии БГ общепромышленного исполнения… выдерживают трёхфазное короткое замыкание в течение 5 сек, а 50% перегрузку в течение 2 минут. В режиме холостого хода генератор обеспечивает прямой пуск асинхронного электродвигателя мощностью до 70% номинальной мощности.
ГЕНЕРАТОРЫ СИНХРОННЫЕ типов БГ-100Т, БГ-100К3, БГ-200Т, БГ-200К1: генератор обеспечивает запуск на холостом ходу прямым включением трехфазного асинхронного короткозамкнутого двигателя без момента на валу, мощность которого составляет 50% номинальной мощности генератора, а кратность пускового тока — до 7.
Судя по приведенным данным, генераторы БЭМЗ соответствуют требованиям российских стандартов.
ОАО «Электроагрегат», Курск
Непосредственно в описании генераторов информации нет, зато удалось найти информацию в описании готовых дизельных электростанций. Так, например, для ДЭС марки АД200С-Т400 (номинальная мощность составляет 200 кВт) мощность запускаемого ненагруженного асинхронного короткозамкнутого двигателя составляет 110 кВт, что составляет 55% от мощности ДЭС.
Lenz Electric
Обычно допустима перегрузка в 10% в течение 1 часа каждые 6 часов. Короткие перегрузки могут быть весьма значительными (в три раза больше номинального тока).
A 10% overload for 1 hour every 6 hours is normally accepted. Short overloads can be very high (3 times the rated current).
LEROY-SOMER
Эта фирма приводит подробные данные по запуску асинхронных двигателей для каждого типа генератора. Например, номинальная мощность генератора LSA 47/2 исполнения M7 составляет 500 кВА, а при запуске асинхронного двигателя – 1073 кВА (система возбуждения SHUNT) или 1195 кВА (система возбуждения AREP). Таким образом, перегрузка генератора при запуске асинхронного двигателя может составлять 215% (SHUNT) или 240%(AREP) при установившемся отклонении напряжения 20% или переходном отклонении напряжения 50%.
Варианты исполнения генератора LSA 47.2.
Информация о допустимой перегрузке генератора при запуске асинхронного двигателя.
MarelliGenerators
К сожалению, удалось только найти упоминание о допустимости 10% перегрузки в течение 1 часа.
Mecc Alte Spa
Допускается перегрузка 10% в течение 1 часа за 6 часовой период, а также 300% нагрузка в течение 20 сек (например, для генератора ECO 38-1LN/4, Рном=200 кВт).
Информация о перегрузке генератора ECO 38-1LN/4
Итак, данные о перегрузке приводят далеко не все изготовители генераторов, и данные разных производителей существенно различаются. Тем не менее, практически все из рассмотренных фирм-изготовителей генераторов декларируют более или менее существенный запас по обеспечению пиковых нагрузок потребителей.
Для общего развития можно ознакомиться с требованиями к судовым генераторам. Для всех генераторов предъявляется требование 50% перегрузки в течение от 15 сек до 2 мин.
Требования по перегрузке, предъявляемые к судовым генераторам
В расчетах также не следует забывать об условиях, влияющих на снижение номинальной мощности генераторов (а значит, и перегрузочную способность тоже) – температуре окружающего воздуха, высоте над уровнем моря, коэффициенте активной мощности потребителей (cosф).
Вот какие коэффициенты рекомендует применять фирма SINCRO для своих генераторов.
Корректирующие коэффициенты для различных "ухудшающих" условий.
Как выбрать инверторный дизельный генератор
Дизельные генераторы являются более надежными и производительными чем их бензиновый аналоги, но все имеют один общий недостаток. Минус связан с принципом работы дизельного привода. Напряжение, вырабатываемое с помощью дизельного двигателя, низкого качества и нестабильное. Это существенно влияет на работу подключаемых к станции электроприборов.
Чтобы устранить недостаток, используют двойной преобразователь. Преобразователь входит в устройство, которое имеет инверторный дизельный генератор. На что обращать внимание, выбирая инверторный электрогенератор дизельного типа? Существуют ли недостатки, о которых необходимо знать еще до приобретения?
Как работает дизель-генератор инверторного типа
Принцип устройства инверторного генератора основан на трансформации кинетической энергии в электрическое напряжение с последующей стабилизацией выходного тока. Осуществляется процесс следующим образом:
- Поршневая система приводит в движение коленчатый вал. Наиболее плавное движение достигается с помощью четырехтактных двигателей. Поэтому, часто дизельный инверторный генератор оснащен приводом именно четырехтактного типа.
Инверторный дизель-генератор достаточной мощности может использоваться не только для прямого подключения бытовых приборов и высокочувствительной техники, но и для проведения сварочных работ. Высокое качество напряжение позволяет подключать генератор без использования дополнительного выпрямителя или трансформаторной катушки.
Как выбрать инверторную дизельную электростанцию
Инверторные дизельные генераторы являются оптимальным вариантом для обеспечения достаточным напряжением не только отдельных бытовых приборов, но и всего дома. Основным преимуществом дизельных моделей является мощность, а также возможность двигателей, используемых в качестве привода, бесперебойно работать в течение нескольких суток.
Инверторные станции дизельного типа могут использоваться в качестве альтернативного источника электроэнергии в виду отсутствия ЛЭП. При выборе устройства следует обратить внимание на следующие критерии:
- Пуск – запуск двигателя может происходить механическим путем с помощью специального троса, либо автоматически. Наличие встроенного АВР дает возможность эксплуатации инверторного дизель-генератора в полностью автономном режиме. В моделях с автоматическим включением резерва при отключении электроэнергии в сети дается команда на запуск. После возобновления подачи напряжения мотор отключается автоматически.
Существуют модели инверторных генераторов работающих на солярке, специально предназначенные для работы в экстремальных условиях. Такое оборудование стоит дороже, но полностью защищено от попадания пыли и влаги и может работать в неблагоприятных условиях.
Плюсы и минусы инверторных дизель-генераторов
Как уже замечалось, основным преимуществом, которое имеют дизельные генераторы инверторного типа, является их высокая производительность. Но есть и другие положительные стороны. А именно:
- Экономичный расход топлива. Инвертор автоматически подает команду на сокращение подачи солярки при условии холостого хода и несколько увеличивает его при максимальных нагрузках. Контроль топлива позволяет оптимизировать работу двигателя и сокращает расход горючего на 15-20%.
Недостаток у инверторных моделей только один – высокая стоимость. Но, при интенсивном использовании за счет меньших расходов на топливе, экономии на сервисном обслуживании и ремонте, переплата полностью окупается уже в первый год эксплуатации.
Дополнительный функционал генераторов с ATS
Системы автоматического запуска генератора и его подключения к основной сети имеют вспомогательные опции. Их не стоит относить к дополнительным функциям, поскольку они отвечают за корректную работу сети. К вспомогательным опциям относят:
- автоматическую подзарядку встроенного аккумулятора, который необходим для запуска двигателя в автономном режиме;
- переключение нагрузки на внутреннюю сеть;
- контроль параметров электросети;
- управление воздушной заслонкой у бензиновых моделей и прогрев дизельных генераторов.
Помимо базовых опций, модернизированные установки могут иметь дополнительные функции:
- возможность управления при помощи смартфона;
- синхронизация одновременной работы нескольких генераторов;
- возможность замены заводских настроек на свои собственные;
- отключение потребителей, вызывающих перегрузку автономной сети;
- защита от критического повышения напряжения.
При этом дополнительный функционал нельзя считать отличительным маркером генераторов с ATS, поскольку некоторыми из перечисленных возможностей могут обладать многие другие модели.
Включение в домашнюю электросеть
Заключительный этап установки — сборка схемы электрических соединений. Обязательно необходимо обеспечить защиту от одновременного подключения двух линий, для чего удобно использовать модульные переключатели типа TDM МП-63 для однофазных сетей или реверсивные модульные рубильники типа ABB OT63E3C для трёх фаз. Также в качестве бюджетного решения для однофазных сетей можно предложить пару одинаковых двухполюсных автоматов: один из них устанавливается в перевёрнутом положении, затем флажки соединяются между собой штифтом. Крайне важно, чтобы при переключении обеспечивался разрыв не только фазных проводов, но также и рабочей нейтрали.
Включение резервной линии в распределительную сеть должно осуществляться между вводным рубильником и общей шиной питания, к которой подключены защитные устройства отдельных линий. При этом резервная линия должна подключаться в обход общих защитных устройств: УЗО и дифференциальной защиты, реле напряжения, УЗИП и грозоразрядников. Если к трёхфазной сети подключается однофазный генератор, трёхфазные УЗО не будут действовать, поэтому резервная линия должна быть подключена в обход них. Однофазные УЗО селективной защиты при этом будут работать как положено.
Подключение генератора через трёхпозиционный рубильник: 1 — вводной автомат сети; 2 — счётчик; 3 — УЗО; 4 — генератор; 5 — трёхпозиционный переключатель; 6 — нулевая шина; 7 — шина заземления; 8 — к потребителям
При наличии в генераторе системы запуска с электроприводом, рекомендуется заменить ВРУ на специальный щит генераторной автоматики. Он содержит в себе блок автоматического ввода резерва с регулируемой задержкой времени между пуском и подключением нагрузки, контролем запуска и всеми необходимыми защитами. При отсутствии системы автоматического пуска его проводят вручную: сначала нужно переключиться на резервную линию, выключить автомат на генераторе, подключить соединительный кабель в розетку, запустить двигатель и выждать время до стабилизации оборотов. Включение защитного автомата на генераторе при ручном пуске всегда осуществляется в последнюю очередь, а при остановке — в первую.
Схема автоматического ввода резерва: 1 — вводной автомат; 2 — счётчик; 3 — УЗО основной сети; 4 — блок автоматического запуска генератора; 5 — генератор; 6 — УЗО резервной сети; 7 — реле времени; 8 — контактор основного ввода; 9 — контактор резервного ввода
Содержание
Дизельные электростанции различаются по выходной электрической мощности, виду тока (переменный трёхфазный/однофазный, постоянный), выходному напряжению, а также частоте тока (например, 50, 60, 400 Гц).
Также дизельные электростанции разделяют по типу охлаждения дизельного двигателя, воздушному или жидкостному. Электростанции с дизельным двигателем жидкостного охлаждения — это агрегаты больших мощностей и размеров.
По назначению
- Передвижные — электростанции мощностью, как правило, до 1000 кВт. Применяются в качестве переносного (портативные) или резервного источника электроснабжения. Зачастую представлены в специальном шумозащитном кожухе или контейнере со стандартными (разрешенными) транспортировочными габаритами.
- Стационарные (промышленные) — электростанции, любой мощности и типа, интегрированные в единую систему энергокомплекса.
По конструктивному исполнению
- или традиционный генератор вращения.
- Открытого исполнения — базовое исполнение электростанции, предназначено для размещения электроустановки в специально оборудованном помещении.
- В шумозащитном кожухе — для установки в помещение или на улице при наличии требований к снижению шума.
- Контейнерные — монтаж электростанции в блок-контейнер осуществляется для эксплуатации установки в тяжелых климатических условиях и повышенной вандалозащищённости.
- Электростанция может быть установлена в фургон, машину или на шасси. Таким образом, она приобретает статус мобильной электростанции.
По роду тока
Маломощные дизельные электростанции вырабатывают, как правило, однофазный переменный ток напряжением 220 В и/или трёхфазный напряжением 380 В.
Трёхфазные электростанции имеют более высокий КПД за счёт более высокого КПД генератора переменного тока.
Переносные дизельные электростанции с встроенным выпрямителем (инвертором) могут иметь дополнительный выход постоянного тока напряжением 12-14 вольт, например, для зарядки аккумуляторов.
Мощные дизельные электростанции вырабатывают трёхфазный ток:
- низковольтные — с напряжением до 1 кВ;
- высоковольтные — с напряжением более 1 кВ (6,3 кВ, 10 кВ).
Если необходимо передавать электроэнергию, выработанную низковольтными электростанциями, на значительные расстояние по линиям электропередачи, напряжение повышается на электрических подстанциях до 6,3 кВ или 10,5 кВ.
По типу генератора переменного тока
Так как частота переменного тока синхронного генератора определяется числом оборотов ротора (двигателя), то дизельная электростанция должна иметь механизм, обеспечивающий постоянное число оборотов дизельного двигателя независимо от нагрузки (генерируемой электрической мощности). Частота переменного тока синхронного генератора будет: f = n 60
ЭДС синхронного генератора регулируется изменением тока возбуждения.
Асинхронный генератор может генерировать переменный ток произвольной, нестандартной частоты (значительно отличающейся, например, от используемой в промышленности и быту частоты 50 Гц). Переменный ток после выхода из генератора подвергается выпрямлению, затем получившийся постоянный ток инвертор преобразует в переменный ток с параметрами, определяемыми стандартом. Недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида.
ЭДС асинхронного генератора регулируется изменением числа оборотов двигателя и изменением тока возбуждения (если предусмотрено конструкцией генератора).
Асинхронные генераторы без встроенной системы «стартового усиления» плохо переносят длительные перегрузки, в отличие от синхронных.
Сварочные агрегаты
Особой разновидностью дизельных и бензиновых электростанций следует считать сварочные агрегаты, генерирующие постоянный или переменный ток для электродуговой сварки. Выходное электрическое напряжение относительно низкое (около 90 вольт), однако сила тока велика, электрические генераторы не боятся коротких замыканий.
Водородная энергетика: начало большого пути
Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.
На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.
Водородные топливные элементы
Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.
Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.
Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов. Источник: James Humphreys / Wikimedia Commons
Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.
Принцип работы водородного топливного элемента. Источник: Geek.com
С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.
С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.
Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.
Проблемы добычи
Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.
Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа. Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.
Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро
Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.
Мобильная электростанция Toshiba H2One
Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.
Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.
Сейчас Toshiba H2One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.
Монтаж системы H2One в городе Кавасаки
Водородное будущее
Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.
Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.
Водородная энергетика — это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.