Teres-1t.ru

Инженерные решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обозначения диодов и принцип работы, ВАХ

Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”. В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:

обозначение диода по ГОСТ 2.730-73

Существуют различные варианты обозначения диодов.

Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:

  • 1) первая буква или цифра указывает на материал:
    • 1 (Г) — германий Ge
    • 2 (К) — кремний Si
    • 3 (А) — галлий Ga
    • 4 (И) — индий In

    Например, для выпрямительных диодов (Д):

    101. 199 — диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.

    201. 299 — диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.

    Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.

    диоды Д243Б

    До 1982 года была другая классификация:

    • первая Д — характеризовала весь класс диодов
    • далее шел цифровой код:
      • от 1 до 100 — для точечных германиевых диодов
      • от 101 до 200 — для точечных кремниевых диодов
      • от 201 до 300 — для плоскостных кремниевых диодов
      • от 301 до 400 — для плоскостных германиевых диодов
      • от 401 до 500 — для смесительных СВЧ детекторов
      • от 501 до 600 — для умножительных диодов
      • от 601 до 700 — для видеодетекторов
      • от 701 до 749 — для параметрических германиевых диодов
      • от 750 до 800 — для параметрических кремниевых диодов
      • от 801 до 900 — для стабилитронов
      • от 901 до 950 — для варикапов
      • от 951 до 1000 — для туннельных диодов
      • от 1001 до 1100 — для выпрямительных столбов

      Система JEDEC (США)

      • первая цифра — число p-n переходов (1 — диод; 2 — транзистор; 3 — тиристор)
      • далее N (типа номер) и серийный номер
      • после может идти пару цифр про номиналы и отдельные характеристики диода

      Система Pro Electron (Европа)

      По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:

      • 1) первая буква:
        • A — германий Ge
        • B — кремний Si
        • C — галлий Ga
        • R — другие полупроводники

        Система JIS (Япония)

        Применяется в странах Азии и тихоокеанского региона.

        • первая цифра — число переходов (0 — фототранзистор, фотодиод; 1 — диод; 2 — транзистор; 3 — тиристор)
        • затем буква S (semiconductors) — полупроводниковые
        • затем буква, отвечающая за тип прибора:
          • A — ВЧ транзисторы p-n-p
          • B — НЧ транзисторы p-n-p
          • С — ВЧ транзисторы n-p-n
          • D — НЧ транзисторы n-p-n
          • E — диоды
          • F — тиристоры
          • G — диоды Ганна
          • H — однопереходные транзисторы
          • J — полевые транзисторы с p-каналом
          • K — полевые транзисторы с n-каналом
          • M — симметричные тиристоры
          • Q — светоизлучающие диоды
          • R — выпрямительные диоды
          • S — малосигнальные диоды
          • T — лавинные диоды
          • V — варикапы, p-i-n диоды, диоды с накоплением заряда
          • Z — стабилитроны, стабисторы, ограничители

          В нашем случае будет буква R.

          Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.

          Общие сведения

          Диод (Д) — полупроводниковый элемент, служащий для пропускания тока через p-n-переход только в одном направлении. При помощи Д можно выпрямлять переменное U, получая из него постоянное пульсирующее. Для сглаживания пульсаций применяют фильтры конденсаторного или индуктивного типа, а иногда их и комбинируют.

          Д состоит только из p-n-перехода с выводами, которые называются анодом (+) и катодом (-). Ток, при прохождении через проводник, оказывает на него тепловое действие. При нагреве катод испускает отрицательно заряженные частицы — электроны (Э). Анод притягивает электроны, так как обладает положительным зарядом. В процессе образуется эмиссионное поле, при котором возникает ток (эмиссионный). Между (+) и (-) происходит генерация пространственного отрицательного заряда, мешающего свободному движению Э. Э, достигшие анода, образуют анодный ток, а не достигшие — катодный. Если анодный и катодный токи равны нулю, Д находится в закрытом состоянии.

          Устройство полупроводника

          Назначение вольт-амперной характеристики (ВАХ) диода

          Д состоит из корпуса, изготавливаемого из прочного диэлектрического материала. В корпусе находится вакуумное пространство с 2 электродами (анод и катод). Электроды, представляющие металл с активным слоем, обладают косвенным накалом. Активный слой при нагревании испускает электроны. Катод устроен таким образом, что внутри его находится проволока, которая накаливается и испускает электроны, а анод служит для их приема.

          В некоторых источниках анод и катод называют кристаллом, который изготавливается из кремния (Si) или германия (Ge). Одна из его составных частей имеет искусственный недостаток электронов, а другая — избыток (рис. 1). Между этими кристаллами существует граница, которая называется p-n-переходом.

          ВАХ диода

          Рисунок 1 — Схематическое изображение полупроводника p-n-типа.

          Сферы применения

          Д широко применяется в качестве выпрямителя переменного U в построении блоков питания (БП), диодных мостов, а также в виде одиночного элемента конкретной схемы. Д способен защитить цепь от несоблюдения полярности подключения источника питания. В цепи может произойти пробой какой-либо полупроводниковой детали (например, транзистора) и повлечь за собой процесс выхода из строя цепочки радиоэлементов. При этом применяется цепочка из нескольких Д, подключенных в обратном направлении. На основе полупроводников создаются переключатели для коммутации высокочастотных сигналов.

          Д применяются в угольной и металлургической промышленностях, особенно при создании искробезопасных цепей коммутации в виде диодных барьеров, ограничивающих U в необходимой электрической цепи. Диодные барьеры применяются вместе с ограничителями тока (резисторами) для уменьшения значений I и повышения степени защиты, а следовательно, электробезопасности и пожаробезопасности предприятия.

          Соответственно состояниям различают два типа напряжения: прямое и обратное. Главный определяющий параметр – сопротивление границы областей электродов.

          Вольт-амперная характеристика (ВАХ)

          Один из ответов на вопрос о том, что такое вах диода, – зависимость проходящего через границу p-n тока от полярности подаваемого напряжения и его величины.

          Ее показывают на графике:

          • вертикальная ось – прямой и обратный ток (верхняя и нижняя часть) в Амперах;
          • горизонтальная – обратное и прямое напряжение (левая и правая сторона).

          Образуется кривая, показывающая значения пропускного и обратного тока.

          Полупроводниковый диод

          Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

          Электрический ток через контакт полупроводников p-n-типа:

          прямой ток через диод

          Идет значительный ток.

          обратный ток через диод

          Ток практически отсутствует.

          вольт-амперная характеристика диода

          Вольт-амперная характеристика p-n-перехода.

          Правая часть графика соответствует прямому направлению тока, а левая – обратному.

          Полупроводниковый диод используется как выпрямитель переменного тока.

          полупроводниковый диод

          Транзистор

          Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

          транзистор

          Упрощенная вольт-амперная характеристика диода

          Как мы увидели ранее – характеристика диода нелинейная. Для проведения расчетов электрических цепей, в которых присутствуют полупроводники, нелинейную часть характеристики заменяют эквивалентными линейными элементами и ведут расчет. Такая схема показана ниже:

          Эквивалентная система замещения диода

          Где: D – диод идеальный, Rпр – прямое, Rзв – обратное сопротивления полупроводника, Е – источник напряжения.

          Если заменить вольт-амперную характеристику полупроводника ломаной линией, как это показано ниже:

          Упрощенная вольт-амперная характеристика диода

          Наклон отрезка АЕ будет соответствовать прямому сопротивлению элемента Rпр, точка встречи этого отрезка с горизонтальной осью будет определять значение источника напряжения Е. при отрицательном напряжении анода и положительном катода работать будет правая часть схемы, при обратной ситуации (анод +, катод -), будет работать левая часть схемы.

          Diody ustroistvo

          Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

          Диод состоит из следующих основных элементов:

          • Корпус . Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
          • Катод . Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
          • Подогреватель . Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
          • Анод . Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
          • Кристалл . Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

          Diody na skheme

          Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

          Принцип действия

          Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

          Диоды в состоянии покоя

          Diod sostoianie pokoia

          Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

          Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

          Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

          Обратное включение

          Diod obratnoe vkliuchenie

          Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

          При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

          Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

          Обратный ток

          Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

          При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

          Прямое включение

          Diod priamoe vkliuchenie

          Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

          Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

          При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

          Прямое и обратное напряжение

          Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

          Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

          Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

          Характеристика диодов

          Diody grafik

          Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

          Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

          Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

          На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

          Условно графическое обозначение (УГО) диода

          У диода есть два вывода (электрода) анод и катод. Анод присоединён к p слою, катод к n слою. Когда на анод подаётся плюс, а на анод минус (прямое включение диода) диод пропускает ток. Если на анод подать минус, а на катод плюс (обратное включение диода) тока через диода не будет это видно из вольт амперной характеристики диода. Поэтому когда на вход выпрямительного диода поступает переменное напряжение через него проходит только одна полуволна.

          Принцип работы выпрямительного диода

          Вольт-амперная характеристика (ВАХ) диода.

          Вольт амперная характеристика диода

          Вольт-амперная характеристика диода показана на рис. I. 2. В первом квадранте показана прямая ветвь характеристики, описывающая состояние высокой проводимости диода при приложенном к нему прямом напряжении, которая линеаризуется кусочно-линей­ной функцией

          где: u — напряжение на вентиле при прохождении тока i; U — пороговое напряжение; Rд — динамическое сопротивление.

          В третьем квадранте находится обратная ветвь вольт-амперной характеристики, описывающая состояние низкой проводимости при проложенном к диоду обратном напряжении. В состоянии низкой проводимости ток через полупроводниковую структуру практически не протекает. Однако это справедливо только до определённого значения обратного напряжения. При обратном напряжении, когда напряженность электрического поля в p-n переходе достигает порядка 10 s В/см, это поле может сообщить подвижным носителям заряда — электронам и дыркам, постоянно возникающим во всем объеме полупроводниковой структуры в результате термической генерации,— кинетическую энергию, достаточную для ионизации нейтральных атомов кремния. Образовавшиеся дырки и электроны проводимости, в свою очередь, ускоряются электрическим полем p-n перехода и также ионизируют нейтральные атомы кремния. При этом происходит лавинообразное нарастание обратного тока, .т. е. лавинный пробои.

          Напряжение, при котором происходит резкое повышение обратного тока, называется напряжением пробоя U3.

          голоса
          Рейтинг статьи
          Читайте так же:
          Ток несрабатывания теплового реле что это
Ссылка на основную публикацию
Adblock
detector