Teres-1t.ru

Инженерные решения
10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое счетчик эвм

Что такое счетчик эвм

Таймером называется средство микропроцессора, служащее для измерения времени и реализации задержек. Основой таймера служит суммирующий счетчик, который считает количество импульсов генератора тактовой частоты.
Для таймера могут быть указаны:

  • разрядость таймера;
  • коэффициент предварительного деления;
  • диапазон изменения счетного регистра;
  • режим работы.

Разрядность таймера представляет собой разрядность двоичного счетчика, используемого для его реализации и определяет верхнюю допустимую границу счетного регистра. Например, для 8-разрядного таймера верхняя граница счетного регистра будет 2 8 -1 = 255.

Предварительный делитель – делитель частоты тактового сигнала, работающий как один или несколько последовательно соединенных T-триггеров. Таймер изменяет свое значение на 1 каждые n сигналов тактового импульса. n называют коэффициентом предварительного деления .

Зная частоту тактового генератора fosc и коэффициент предварительного деления Kpre, легко определить частоту таймера по формуле:

Время одного тика таймера соответственно будет

Полное время счета таймера (время перебора всех допустимых значений двоичного счетчика) определится как

Например, если требуется реализовать задержку 1с на 8-разрядном таймере с коэффициентом предварительного деления Kpre=1 и тактовой частотой fosc=8 МГц, имеем

tic = 0,125 мкс;
Tcount = 0,125*2 8 = 32 мкс
1с/32мкс = 31250 повторений

Широтно-импульсная модуляция

Широтно-импульсная модуляция (ШИМ) – импульсный сигнал постоянной частоты и переменной скважности.
Скважность есть отношения периода следования импульса к длительности импульса.
С помощью задания скважности (длительности импульсов) можно менять среднее напряжение на выходе ШИМ.
Обратная величина, то есть отношение длительности импульса к периоду, называется коэффициентом заполнения .

Разрядностью ШИМ называется разрядность таймера, используемого для формирования ШИМ-сигнала.
Существуют два основных режима работы ШИМ:

  • быстрый ШИМ;
  • фазовый ШИМ.
Быстрый ШИМ

Период ШИМ определяется максимальным значением, до которого считает счетчик. В этот момент ШИМ-сигнал устанавливается в «1». При достижении счетчиком значения, поданного на второй вход цифрового компаратора, осуществляется сброс выходного ШИМ-сигнала.

Фазовый ШИМ

В данном режиме счетчик работает как суммирующий и считает от 0 до максимального значения, а при достижении максимального значения работает как вычитающий, считая до 0.

При совпадении значения счетчика с некоторым установленным значением, происходит переключение выхода ШИМ.

Частотно-импульсная модуляция — сигнал переменной частоты и постоянной скважности, равной 2. При таком виде модуляции изменяется период сигнала, а длительность импульса всегда составляет половину периода.

Емкостной делитель напряжения

Программирование микроконтроллеров Курсы

Простейший емкостной делитель напряжения состоит из двух последовательно соединенных конденсаторов и используется для снижения величины U на отдельных элементах электрической цепи.

Емкостной делитель напряжения

Делитель постоянного напряжения на конденсаторах чаще всего применяют многоуровневых инверторов напряжения, широко используемых как на электроподвижном составе, так и в других направлениях силовой электроники.

Делитель постоянного напряжения на конденсаторах

Главная сложность практического применения такой схемы (и всех подобных схем) заключается в невозможности обеспечения равномерного разряда конденсаторов, вследствие чего напряжения на них будет распределяться не поровну. Чем сильнее разряжен один конденсатор по сравнению с другим (иди с другими), тем большая разница в U будет на них, что наглядно отображает формула:

Формула напряжение, емкость, заряд

Напряжение, заряд, емкость

По этой причине подобные схемы крайне нестабильно работают и обязательно предусматривают узлов подзарядки конденсаторов с целью выравнивания напряжения на последних.

Емкостной делитель напряжения в цепи переменного тока

В радиоэлектронике в большей степени находят применение емкостные делители переменного напряжения.

Конденсатор, как и катушка индуктивности, относится к реактивному элементу, то есть потребляет реактивную мощность от источника переменного тока, в отличие от резистора, который является активным элементов и потребляет исключительно активную мощность.

Реактивный элемент

Здесь следует кратко пояснить разницу между активной и реактивной мощностями. Активная мощность выполняет полезную работу и реализуется только в том случае, когда ток и напряжение направлены в одном направлении и не отстают друг от друга, то есть находятся в одной фазе, что имеет место только на резисторе. На конденсаторе ток отстает от напряжения на угол φ = 90°. В результате чего ток напряжение находятся в противофазе, поэтому когда ток имеет максимальное значение напряжение равно нулю, а произведение этих двух величин дают мощность, которая в таком случае равна нулю, так как один из множителей равен нулю. Следовательно, мощность не потребляется.

Читайте так же:
Сломался счетчик гвс как заменить

Ток и напряжение на резисторе, конденсаторе и индуктивности

Аналогичные процессы протекают и в цепи с катушкой индуктивности. Разница лишь в том, что на индуктивности i отстает от u на угол φ = 90°.

Реактивная мощность проявляется только в цепях переменного тока. Она составляет часть полной мощности и определяется по формуле:

Формула полная мощность, активная мощность, реактивная мощность

Реактивная мощность в отличие от активной, не потребляется нагрузкой, а циркулирует между источником питания и нагрузкой. Поэтому конденсатора и катушка индуктивности являются реактивными элементами, не потребляющими активную мощность и по этой причине они практически не нагреваются.

Расчет сопротивления делителя напряжения на конденсаторах заключается в определении необходимых значений сопротивлений.

Сопротивление конденсатора XC является величиной не постоянной и зависит от частоты переменного тока f и емкости C:

Формула емкостное сопротивление

Как видно из формулы, сопротивление снижается с увеличением частоты и емкости. Для постоянного тока, частота которого равна нулю, сопротивление стремится к бесконечности, поэтому, рассматриваемая далее схема емкостного делителя напряжения не применяется постоянном токе.

Схема емкостного делителя напряжения

Для снижения величины uвых, например в два раза, емкости C1 и C2 должны быть равны. Универсальные формулами для определения выходных uвых1 и uвых2 в зависимости от входного и емкостей C1 и C2 имеют вид, аналогичный для резисторных делителей:

Формула делитель напряжения на конденсаторах

Поскольку частота переменного тока для всех конденсаторов одинакова, то формулу можно упростить:

Формула емкостной делитель напряжения

Индуктивный делитель напряжения

В качестве делителей переменного напряжения также, но гораздо реже, применяют катушки индуктивности, которые относятся к реактивным элементам. Однако, в отличие от конденсаторов, которые являются накопителями электрического поля, катушки индуктивности накапливают магнитное поле.

Индуктивный делитель напряжения

Индуктивное сопротивление зависит от индуктивности L и частоты переменного тока f. С ростом этих параметров сопротивление катушки переменному току возрастает.

Формула делителя напряжения на катушках индуктивности

Упрощенный вариант формулы:

Формула индуктивный делитель напряжения

Схема индуктивного делителя напряжения

Как вы наверняка уже заметили, чтобы рассчитать емкостной делитель напряжения достаточно знать емкости конденсаторов, а индуктивный делитель – индуктивности.

Электроника для начинающих

Еще статьи по данной теме

Делитель напряжения на резисторах

Инвертор напряжения

Умножитель напряжения

Замена электролитического конденсатора

При расчёте напряжения ёмкостного делителя где вместо реактивного сопротивления конденсатора пишется ёмкость конденсаторов(упрошённая формула)-ОШИБКА,КОТОРУЮ НАДО ИСПРАВИТЬ!А заключается она в том,что в Uвых1 не C2 в числителе должно быть,а C1.Аналогично в Uвых2.

Как выбирать

Важно понимать, что чем больше приёмных устройств, тем больше ослабнет поступающий сигнал. Это приемлемо в тех случаях, когда он изначально высокий. Если это не так, то нужно выбирать активный антенный разветвитель. Его желательно устанавливать рядом с приёмной антенной.

Сначала нужно определить требуемые параметры прибора. Для этого заходят в настройки и смотрят частоты используемых каналов. Важно, чтобы верхний порог диапазона был выше этой частоты.

Нужно учесть количество имеющихся телевизионных приёмников и подумать о том, планируете ли покупать новую технику. Если это так, то для них также нужно предусмотреть выходы разветвителя. Их количество в купленном устройстве должно соответствовать.

При покупке нужно оценить внешний вид устройства. Если планируется разместить в специальном коробе, то нужно подобрать размеры так, чтобы он мог там поместиться.

На корпусе телевизора может быть предусмотрено место для крепления устройства. Если его планируют здесь закрепить, нужно чтобы разветвитель ему соответствовал. Недопустимо прикреплять его таким образом, чтобы он свободно болтался.

При покупке нужно определить типы доступных разъёмов. Они должны соответствовать имеющимся кабелям. Сделав выбор рекомендуется посмотреть в интернете, какие модели подойдут. При необходимости стоит предпочесть активный разветвитель.

Как работают делители

Даже не помышляйте о том, чтобы просто присоединить к антенне два параллельных кабеля и получить ещё один источник сигнала. Неужели нельзя соединять антенные кабели по-простому? Закон не запрещает, но нельзя.

Читайте так же:
Оплата счетчиков гвс хвс

Схема и плата делителя внутри

Антенный кабель, как и любой другой, имеет характеристику, которая называется «волновое сопротивление». Кабель имеет своё, рассчитанное конструкторами волновое сопротивление, поэтому он должен подключаться только к объекту, который имеет такое же волновое сопротивление. Любая попытка подключить кабель «к чему попало» приводит к тому, что основная часть сигнала, дойдя до конца кабеля, не поступает к объекту с другим значением волнового сопротивления, а вместо этого отражается и идёт по коаксиалу назад.

Сигнал не будет переходить от кабеля к объекту с «неправильным» волновым сопротивлением. Вот поэтому, вместо примитивного, неправильного соединения в виде скрутки, нужно использовать разветвитель коаксиального кабеля, или сумматор антенных сигналов, с хорошо просчитанным волновым сопротивлением, таким же, как у кабеля. К сожалению, поделённый на несколько приёмников сигнал на выходе имеет несколько сниженный уровень.

Знание того, как работает ваш делитель, поможет уменьшить время устранения возможных неполадок. Например, при рваной картинке на экране, поиск причин целесообразно начать с диагностики неисправностей в источнике сигнала. Нужно проверить кабельные разъемы сплиттера, изоляцию кабеля. Никакие металлические части кабельного экрана не должны касаться центральной жилы кабеля или зажима.

Частотомер на PIC16F628А своими руками

Частотомер на PIC16F628 своими рукамиОдним из приборов-помощников радиолюбителя должен быть частотомер. С его помощью легко обнаружить неисправность генератора, измерить и подстроить частоту. Генераторы очень часто встречаются в схемах. Это приемники и передатчики, часы и частотомеры, металлоискатели и различные автоматы световых эффектов…

Особенно удобно пользоваться частотомером для подстройки частоты, например при перестройки радиостанций, приёмников или настройки металлоискателя.

Один из таких несложных наборов я недорого приобрёл на сайте китайского магазина здесь: GEARBEST.com

Частотомер на PIC16F628 своими руками

Набор содержит:

  • 1 x PCB board (печатная плата);
  • 1 x микроконтроллер PIC16F628A;
  • 9 x 1 кОм резистор;
  • 2 x 10 кОм резистор;
  • 1 x 100 кОм резистор;
  • 4 x диоды;
  • 3 x транзисторы S9014, 7550, S9018;
  • 4 x конденсаторы;
  • 1 x переменный конденсатор;
  • 1 x кнопка;
  • 1 x DC разъём;
  • 1 x 20МГц кварц;
  • 5 x цифровые индикаторы.

Описание частотомера

  • Диапазон измеряемых частот: от 1 Гц до 50 МГц;
  • Позволяет измерять частоты кварцевых резонаторов;
  • Точность разрешение 5 (например 0,0050 кГц; 4,5765 МГц; 11,059 МГц);
  • Автоматическое переключение диапазонов измерения частоты;
  • Режим энергосбережения (если нет изменения показаний частоты — автоматически выключается дисплей и на короткое время включается;
  • Для питания Вы можете использовать интерфейс USB или внешний источник питания от 5 до 9 В;
  • Потребляемый ток в режиме ожидания — 11 мА

Схема содержит небольшое количество элементов. Установка проста — все компоненты впаиваются согласно надписям на печатной плате.

Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой. Индикаторы, микросхема и её панелька для исключения повреждений ножек вставлены в пенопласт.

Принципиальная схема частотомера

Частотомер на PIC16F628 своими руками

Напряжение на выводах микроконтроллера

  1. 4,0
  2. 4,0
  3. 0,3
  4. 5,0
  5. 0,98
  6. 0,98
  7. 0,98
  8. 0,98
  9. 0,98
  10. 0,98
  11. 5
  12. 1,26
  13. 2,13
  14. 4
  15. 4,12

Генератор для проверки кварцев

Частотомер на PIC16F628 своими руками

Приступаем к сборке

Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.

Частотомер на PIC16F628 своими руками

Ну и вид на весь набор в полностью разложенном виде.

Частотомер на PIC16F628 своими руками

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.

Конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.

Читайте так же:
Счетчики для производства пива

Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.

Частотомер на PIC16F628 своими руками

Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.

Частотомер на PIC16F628 своими руками

Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.

Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.

Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.

Далее впаиваем транзисторы, диоды и индикаторы. В отличии от резисторов и конденсаторов здесь нужно впаивать правильно, согласно рисунку и надписям на плате.

Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.

Частотомер на PIC16F628 своими руками

Ну вот собственно и всё!

Частотомер на PIC16F628 своими руками

Теперь осталось смыть остатки канифоли щёткой со спиртом.

Частотомер на PIC16F628 своими руками

Осталось правильно вставить микросхему в свою «кроватку» и подключить питание к схеме.

Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)

Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.

При подключении питания и отсутствия сигнала на входе высвечивается .

Частотомер на PIC16F628 своими руками

Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.

Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.

Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.

Частотомер на PIC16F628 своими руками

Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.

Таблица алгоритма програмирования

Частотомер на PIC16F628 своими руками

Чтобы войти в режим программирования (Prog) нужно нажать и удерживать кнопку в течении 1-2 сек.

Затем нажимаем кнопку и поочередно пролистываем меню:

«Quit» — «Выход» : прерывает режим программирования, ничего не сохраняя.

«Add» — «Добавление» : сохранение измеренной частоты и в дальнейшем эта частота будет складываться с измеряемыми частотами.

«Sub» — «Вычитание» : сохранение измеренной частоты и в дальнейшем она будет вычитаться с измеряемыми частотами.

«Zero«- «Ноль» — обнуляет все ранее запрограммированные значения.

«table» — «Таблица«: в этой таблице можно выбрать основные запрограммированные частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц. После выбора записи (длительное нажатие), вы вернетесь в «Главное меню» и выберите пункт «Add» — «добавить» или «Sub» — «убавить«.

Читайте так же:
Счетчики для производителей пива

«PSave» / «NoPSV«: включает / отключает режим энергосбережения. Дисплей отключается если нет изменения частоты некоторое время.

Если показания сильно отличаются, то возможно включена предустановка. Чтобы её отключить войдите в режим программирования и затем нажимая кнопку выберите «Zero» и удерживайте пока не начнёт мигать, затем отпустите её.

Интересный обучающий конструктор. Собрать частотомер под силу даже начинающему радиолюбителю.

Качественно изготовленная печатная плата, прочное защитное покрытие, небольшое количество деталей благодаря программируемому микроконтроллеру.

Конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с немало важным для радиолюбителя прибором — частотомером.

Доработка частотомера

Внимание! В заключение хочется отметить, что входной измеряемый сигнал подаётся непосредственно на вход микросхемы, поэтому для лучшей чувствительности и главное, защиты микросхемы нужно добавить по входу усилитель-ограничитель сигнала.

Можно спаять один из предложенных ниже.

Частотомер на PIC16F628 своими руками

Сопротивление R6 на верхней и R9 на нижней схеме подбирается в зависимости от напряжения питания и устанавливается на его левом выводе 5 В. При питании 5 В сопротивление можно не ставить.

Частотомер на PIC16F628 своими руками

… или простой, на одном транзисторе:

Номиналы сопротивлений указаны при питании 5В. Если у Вас питание усилителя другим напряжением, то подберите номинал R2,3 чтобы на коллекторе транзистора было половина питания.

Схема похожего частотомера с входным каскадом усилителя.

Частотомер на PIC16F628 своими руками

Вторая доработка. Для увеличения измеряемого потолка частоты можно собрать к частотомеру делитель частоты. Например, схемы ниже:

Частотомер на PIC16F628 своими руками Частотомер на PIC16F628 своими руками Частотомер на PIC16F628 своими руками

Надеюсь, что обзор данного конструктора-частотомера был интересен и полезен. Удачи!

Что такое матрица или DMD-чип

Первая в мире DMD микросхема или матрица была изобретена не так давно, в 1987 году. Ее создал ученый Ларри Хорнбек, работающий в компании DARPA, для решений различных задач Пентагона. Топ-менеджеры компании по достоинству оценили новую разработку и начали изучение коммерческого применения микросхемы.

Спустя 7 лет после изобретения мир увидел первый DLP-проектор с применением матрицы. Специалисты со всего мира оценили новую технологию как очень перспективную и с того времени DLP вытеснило все прочие технологии на второй план на рынке. Патент на DMD-чип выкупила компания Texas Instruments и до сегодняшнего дня является собственником микросхем, поставляя их мировым производителям.

Устройство микросхемы

Матрица формируется на кремниевом кристалле КМОП-памяти. Она состоит из большого количества микрозеркал из алюминия, которые могут менять свой угол наклона. Таким образом, они могут отражать или поглощать свет, передавая на экран светлые и темные точки.

Стандартная технология использования кремния предполагает формирование матрицы запоминающих элементов. Размеры ее начинаются от 800х600, 1024х768 и больше, где выстраивается два слоя металлизации для соединения. Для ускорения доступа столбцы и строки разбивают на отдельные группы, каждая из которых управляется собственными дешифраторами и демультиплексорами.

В третьем слое металлизации собраны адресные электроды, а также шина смешения, на которой расположены посадочные зоны. Окантовку вокруг поля с микрозеркалами специально зачерняют. Это делается для того, чтобы избежать засветки вокруг экрана проектора, поддерживая высокое качество изображения.

Сам кристалл помещают в корпус с кварцевым стеклом, выполненный из металлокерамики. Для соединения контактных площадок кристалла с выводами корпуса используют проводники из золота. В самом корпусе также устанавливают специальное поле, которое будет отводить тепло от матрицы, защищая ее от перегрева.

В первых прототипах и моделях размер зеркал составлял 16×16 мкм, при этом они могли поворачиваться на угол в 10°. И это уже было достаточно много для того времени. Сегодня же размер зеркал в матрицах зависит от разрешения, а угол отклонения достигает 12°.

Читайте так же:
Инструкция счетчика для пива

Зеркала крепят на торсионные подвесы, обеспечивая долговечность работы матрицы. Повороты зеркал осуществляются при помощи электростатики. Для подвесов используется сверхпрочный металл, который и гарантирует надежность технологии. Как оценивает сама компания Texas Instruments, работать такая микросхема может до 76 000 часов.

Как работает матрица

Состояние каждого пикселя изображения фиксируется в триггерах, специальных ячейках памяти. Именно они влияют на положение зеркал во время трансляции. Это происходит благодаря адресным электродам, которые подключают триггеры к микроструктуре.

Всю работу DMD-матрицы можно разделить на 6 состояний:

  • Сброс. Микрозеркала притягиваются к электродам через импульс повышенного напряжения. Эта фаза защищает зеркала от “залипания” и предотвращает задержки в работе проектора.
  • Освобождение. После прохождения импульса микрозеркала выстраиваются в одной плоскости, это состояние называют нейтральным положением.
  • Дифференциация. На шину смещения передается промежуточное напряжение, которое выстраивает каждое зеркало в нужном положении, в зависимости от ячейки памяти.
  • Приземление. На шину подается уже другой импульс напряжения, который ускоряет поворот зеркал, притягивая их к нужным электродам под максимальным углом наклона.
  • Загрузка памяти. Зеркала в этой фазе не двигаются, а на ячейках памяти построчно обновляется информация.
  • Готовность памяти. Во все триггеры последовательно загружена необходимая информация.

Фазы проходят попеременно, обеспечивая работу матрицы. Отразившись от зеркал, изображение через объектив проецируется на экран. Управление зеркалами осуществляется благодаря изменению напряжения в шине смещения. Оно регулируется микросхемами, которые размещают вне матрицы. Стоит отметить, что все зеркала в комплексе работают максимально синхронно. Это обеспечивает динамику работы матрицы, которая может качественно передавать движение.

За более чем четверть века работы над технологиями компанией Texas Instruments сменилось несколько поколений матриц. Каждая новая разработка получает все больше улучшений, значительно повышая характеристики моделей. Компания не планирует останавливаться на достигнутом, и продолжает исследования и разработки, поставляя миру матрицы, которые соответствуют растущим требованиям потребителя.

Опубликовано 18.08.2021 337 просмотров

Виды материалов для производства счетчиков и особенности выбора прибора учета для дома

Потребитель при выборе всегда обращает внимание на качество изделия, а эту характеристику во многом обеспечивают именно материалы, используемые для его производства. Это правило справедливо и для бытовых счетчиков, но с некоторыми исключениями. Конечно, изделия из нержавеющей стали превосходят приборы, изготовленные из силумина, однако, цена первых существенно выше. Поэтому потребителю обязательно надо принимать во внимание этот факт, так как срок окупаемость счетчика с более высокими характеристиками может быть просто неоправданно длительным. А вместе с тем, по сути, оба прибора будут справляться со своими функциями одинаково.

Виды материалов для производства счетчиков

Также следует учитывать и то, что условия эксплуатации бытовых счетчиков редко бывают экстремальными. Их, как правило, устанавливают в сухих помещениях, а для защиты рабочих механизмов от прокачиваемой жидкости низкого качества, нередко используют фильтры. Кроме того, не очень высокие характеристики ударопрочности силумина, например, отлично компенсируются тем, что прибор, установленный в доме, редко подвергается значительному механическому воздействию, поэтому такой счетчик может прослужить весь свой срок, отлично справляясь со своими задачами. Но в том случае, если установка производится во влажном помещении, то на параметры изделия следует обращать более пристальное внимание. Также, если счетчик предназначен для учета потребления жидкости (воды или теплоносителя) низкого качества, с наличием в ней нерастворимых частиц, то изделия из материалов с более высокими характеристиками будут предпочтительнее. В этом случае также важно обращать внимание и на конструктивные особенности самого прибора, например, можно подумать над тем, чтобы выбрать и установить счетчик с «сухим» ходом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector