Счетчики. Последовательный двоичный счетчик. Асинхронные и синхронные счетчики
Счетчики. Последовательный двоичный счетчик. Асинхронные и синхронные счетчики
Двоичные счетчики и делители частоты используются в самых разных областях техники, в частности в управляющих системах ЭВМ, в цифровых электронных часах, частотомере и т.д. Наиболее часто на практике применяются двоичные и десятичные счетчики и делители.
Основной параметр счетчика – модуль счета Кс – максимальное число, импульсов, которое может быть сосчитано счетчиком. Если счетчик состоит из m триггеров, то число состояний 2 m и Кс≤2 m . Число импульсов, сосчитанное счетчиком может быть представлено на его выходе в прямом коде, обратном, циклическом. Счетчики и делители по модулю Кс делятся на асинхронные, и синхронные. У асинхронных делителей каждый разряд синхронизует следующий разряд деления. Синхронные делители синхронизируются поступающими извне импульсами. Входы синхронизации обычно у них включены параллельно.
По направлению счета счетчики делятся на суммирующие, вычитающие и реверсивные.
У суммирующего счетчики число, которое в него записано, увеличивается на единицу после того каждого импульса до заполнения, а у вычитающего счетчики уменьшается. Реверсивные счетчики могут считать по соответствующей команде в обеих направлениях. В большинстве счетчиков используются синхронные триггеры, синхронизируемые фронтом тактовых импульсов : D, J-K триггеры.
Асинхронные счетчики.
Переход любого состояния выхода триггера по таблице происходит при условии, если соседний младший разряд переходит из состояния лог.1 в состояние лог.0, т.е. по спаду уровня логического сигнала. Таким образом, для построения суммирующего счетчика выход каждого триггера соединяется с входом синхронизации, причем триггеры должны синхронизироваться спадом логического уровня.
Возможно также использовать триггеры, синхронизируемые фронтом логического сигнала, но в таком случае выходами счетчика являются инверсные выходы триггеров .
Вычитающий счетчик на D – триггерах.
Аналогично при движении по таблице в сторону уменьшения, можно увидеть, что изменение состояния разряда происходит при переходе в младшем разряде уровня из лог.0 в лог.1, т.е. для построения счетчики нужно использовать триггеры с синхронизацией по фронту на входе синхронизации. Можно также увидеть, что у суммирующего счетчика на выходах
коды уменьшаются, поэтому если снимать сигналы с инверсных выходов, то получим вычитающий счетчик.
Асинхронные счетчики просты по устройству, но быстродействие их низкое, так как задержка установления старшего разряда равна n ∙ t, где n – число триггеров, если все триггеры переходят из состояния лог.1 в лог.0. Если к выходам такого счетчики подключена схема совпадений, то возможны ложные ее срабатывания. Это происходит потому, что при переключении триггеров по цепочке число, записанное в счетчике перед установившемся состоянием, проходит ряд значений и поэтому возможны возвращение (на время задержки переключения триггеров) состояния счетчика к предыдущим значениям.
Однако во многих случаях это не имеет значения. Например, для суммирующего счетчика, если схема совпадений настроена на состояние «все единицы», ложных срабатываний нет.
Синхронные счетчики.
Задержки срабатывания уменьшаются у синхронных счетчиков. Из таблицы можно также увидеть, что изменение в любом из разрядов происходит в случае, если в предыдущем такте во всех младших разрядах установлены лог.1. Поэтому у суммирующего счетчика разрешение на переключение некоторого триггера дается в случае, если во всех младших триггерах по отношению к данному установлены лог.1, при этом входы синхронизации триггеров включены параллельно. Синхронные счетчики делятся на параллельные, последовательные и последовательно – параллельные.
Параллельный синхронный делитель на 16.
1. Состояние всех триггеров меняется одновременно, поэтому задержка счетчика равна задержке переключения одного триггера.
2. Переход любого из триггеров происходит, если все предыдущие триггеры находятся в состоянии лог.1.
Последовательный синхронный счетчик.
Здесь также триггеры переключаются одновременно, но максимальная частота счета определяется задержкой распространения переноса внутри схемы и между счетчиками, если два или несколько таких счетчиков включены последовательно.
Реверсивный двоичный счетчик с управлением направления счета.
Реверсивный счетчик служит ля сложения или вычитания поступающих импульсов. Как правило, реверсивные счетчики выполняются синхронными. В рассматриваемой схеме сигналы синхронизации со входа С поступают на все триггеры, но разрешение счета каждого из триггеров формируется в зависимости от направления счета и состояния предыдущих счетчиков. В суммирующем режиме (Режим = 0) переход каждого триггера разрешается, если во всех младших до него разрядах установлены лог.1. В вычитающем режиме триггер переключается, если во всех младших разрядах лог.0.
Обычно микросхемы счетчиков, выпускаемые промышленностью, имеют 4 разряда. Часто возникает необходимость иметь счетчики большей разрядности, поэтому все такие счетчики можно каскадировать, т.е., соединяя их последовательно, можно наращивать разрядность. Для этого у счетчиков предусмотрены дополнительные выходы и входы. Имеются выходы переноса (выход переполнения), которые подключаются к входам переноса счетчиков старших разрядов. При этом выполняется условие, при котором работа счетчика в суммирующем режиме разрешена, если у всех счетчиков в младших разрядах установлены лог.1, и наоборот для вычитающего режима. Пример такого счетчика показан ниже. В нем использована другая идея. Прохождение импульсов на вход синхронизации происходит для суммирующего режима в том случае, если во всех младших разрядах и на входе переноса счетчика.
Этот счетчик имеет 2 входа синхронизации. Если импульсы поступают на вход С + , то счетчик работает как суммирующий, если на вход С – , то как вычитающий. При каскадировании выходы переносов Р + и Р – подключается соответственно к счетным входам С + и С – . Подобная схемотехника используется в счетчике ИЕ7 ТТЛ различных серий (555 ИЕ7, 1533 ИЕ7).
Счетчики с произвольным коэффициентом деления
В различных электронных устройствах часто необходимо использовать счетчики с коэффициентом счета не равным 2 m , где m – целое число. В частотомерах используются счетчики на 10, в электронных часах имеются счетчики на 24, на 12, на 60. Часто требуются счетчики с другим модулем счета. Такие счетчики используют обычные счетные триггеры, которые могут находиться в 2-ух состояниях, поэтому для счетчика с модулем счета К число состояний триггерной схемы должно быть не меньше К. Таким образом можно записать: К ≤ 2 N . Или N ≥ log 2 K).
Для построения счетчика с произвольным модулем счета используются схемы на двоичных триггерах, в которых при помощи дополнительной логики исключаются лишние состояния с помощью обратных связей.
Применение синхронных двигателей:
- Эти двигатели используются как первичные двигатели (приводы) для центробежных насосов, поршневых компрессоров с ременным приводом, воздуходувок, бумажных фабрик, резиновых фабрик и т.д. Из-за их высокой эффективности и высоких скоростей (об / мин выше 600).
- Низкоскоростные синхронные двигатели (об / мин ниже 600) широко используются для привода многих поршневых насосов. Таких как винтовые и шестеренные насосы, вакуумные насосы, дробилки, машины для прокатки алюминиевой фольги.
- Эти моторы также широко используются на борту судов. Навигационное оборудование корабля, такое как гирокомпас, использует специальный тип синхронного двигателя. Они также используются в качестве первичных двигателей для Viscometer. Это устройства для измерения / регулирования вязкости мазута главного двигателя.
- Большинство фабрик и производств используют бесконечное количество индуктивных нагрузок. Они могут варьироваться от ламповых ламп до мощных асинхронных двигателей. Таким образом, эти индуктивные нагрузки имеют значительный коэффициент мощности отставания. Синхронный двигатель с избыточным возбуждением (синхронный конденсатор), имеющий ведущий коэффициент мощности, используется для улучшения коэффициента мощности этих систем питания.
- Эти двигатели также используются для регулирования напряжения, когда происходит сильное падение / повышение напряжения. Так же когда тяжелая индуктивная нагрузка включается / выключается в конце длинных линий электропередачи.
- Синхронные двигатели могут работать на сверхнизких скоростях с помощью мощных электронных преобразователей, которые генерируют очень низкие частоты. Примерами этих двигателей являются диапазоны мощностью 10 МВт, используемые для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.
Отличие в характеристиках электродвигателей
Конструктивные особенности и рабочие характеристики электродвигателей имеют решающее значение при выборе агрегатов. От этого зависит проектирование трансмиссий и всех силовых узлов механизмов. При выборе двигателя нужно опираться на общность и главные отличия в свойствах машин:
- Главное отличие синхронного от асинхронного двигателя заключается в конструкции ротора. Он представляет собой постоянный или электрический магнит. У асинхронника магнитные поля в роторе наводятся с помощью электромагнитной индукции.
- У синхронных двигателей частота вращения вала постоянна, у асинхронников она может изменяться при изменении нагрузки.
- У синхронников отсутствует пусковой момент. Для входа в синхронизацию требуется применять асинхронный пуск.
Синхронный и асинхронный электродвигатели находят каждый своё применение. Синхронные двигатели рекомендуется использовать везде при высоких мощностях, где присутствует непрерывный производственный процесс и не нужно часто перезапускать агрегаты или регулировать частоту вращения. Они используются в конвейерах, прокатных станах, компрессорах, камнедробилках и т. д. Современный синхронный электродвигатель имеет такой же быстрый запуск, как и асинхронный, но он меньше и экономичнее, чем асинхронный, равный по мощности.
Асинхронные электродвигатели с фазным ротором применяются там, где нужен большой пусковой момент и частые остановки агрегатов. Например, в лифтах и башенных кранах. Асинхронные электродвигатели с короткозамкнутым ротором получили широкое применение из-за простоты устройства и удобства в эксплуатации.
Используя достоинства разных агрегатов и то, чем отличается синхронный двигатель от асинхронного, можно делать обоснованный выбор того или иного мотора при проектировании машин, станков и другого оборудования.
Объяснение принципа работы асинхронного электродвигателя для «чайников»
Вспоминаем описание рисунка в предыдущем примере. Та же рамка, расположенная между полюсами подковообразного магнита, только её концы не имеют полуколец, они соединены между собой.
Теперь начинаем вращать вокруг рамки подковообразный магнит. Вращаем его медленно и наблюдаем за поведением рамки. До некоторых пор рамка остаётся неподвижной, а потом, при повороте магнита на определённый угол, рамка начинает вращение вслед за магнитом. Вращение рамки запаздывает по сравнению со скоростью вращения магнита, т.е. она вращается не синхронно с ним – асинхронно. Вот и получается, что это примитивный асинхронный электродвигатель.
Вообще-то роль магнитов в настоящем асинхронном двигателе служат обмотки, расположенные в пазах статора, на которые подаётся ток. А роль рамки, выполняет ротор, в пазы которого вставлены металлические пластины, соединённые между собой на коротко. Поэтому такой ротор называется короткозамкнутым.
Преимущества синхронного обучения
- Немедленная обратная связь от преподавателя. Слушатели могут задавать вопросы и получать на них ответы прямо во время лекции.
- Групповые занятия. Спорные и непонятные моменты можно обсуждать с другими студентами в режиме реального времени. Преподаватель может разделить студентов на группы и раздать им задания для коллективного выполнения. Обсуждения могут происходить посредством мессенджеров, либо же в отдельном чате или отдельной вебинарной комнате.
- Мотивация и разъяснения от преподавателя. Если у студента возникают трудности с освоением материала, то он может задать вопросы непосредственно во время изложения материала, а не откладывать на потом.
- Выше концентрация внимания. По ходу трансляции преподаватель может проводить опросы, обращаться к конкретному студенту, давать задания, чтобы проверить – действительно ли учащиеся слушают лекцию или подключились “для галочки”.
Ключевой особенностью синхронного обучения является то, что студенты должны быть онлайн в строго определенное время, а это накладывает определённые ограничения. Некоторые учащиеся могут не успевать осваивать материал в общем темпе и чувствовать нехватку индивидуального внимания преподавателя. В группе появятся “тормозящие” и те, кто, наоборот, давно готов перейти к следующему блоку учебных материалов. Чтобы этого избежать, преподавателю необходимо тщательно отслеживать успеваемость студентов, давать персональные консультации.
Асинхронные Счетчики
Если триггеры не получают тот же тактовый сигнал, то этот счетчик называется асинхронным счетчиком . Выходной сигнал системных часов применяется в качестве тактового сигнала только для первого триггера. Оставшиеся триггеры получают тактовый сигнал с выхода предыдущего триггера. Следовательно, выходы всех триггеров не изменяются (влияют) одновременно.
Теперь давайте обсудим следующие два счетчика один за другим.
- Асинхронный двоичный счетчик
- Асинхронный двоичный счетчик
Асинхронный двоичный счетчик
N-битный асинхронный двоичный счетчик состоит из «N» T триггеров. Он отсчитывает от 0 до 2 ? — 1. Блок-схема 3-битного асинхронного двоичного счетчика с повышением частоты показана на следующем рисунке.
3-битный асинхронный двоичный счетчик содержит три триггера, и Т-вход всех триггеров подключен к «1». Все эти триггеры запускаются по отрицательному фронту, но выходы изменяются асинхронно. Тактовый сигнал напрямую подается на первый Т-триггер. Таким образом, выход первого T триггера переключается для каждого отрицательного фронта тактового сигнала.
Выход первого триггера T применяется в качестве тактового сигнала для второго триггера T. Таким образом, вывод второго T-триггера переключается для каждого отрицательного фронта вывода первого T-триггера. Аналогично, выход третьего T-триггера переключается для каждого отрицательного фронта выхода второго T-триггера, поскольку выход второго T-триггера действует как тактовый сигнал для третьего T-триггера.
Предположим, что начальный статус T триггеров с крайнего правого на самый левый равен Q 2 Q 1 Q 0 = 000 . Здесь Q 2 & Q 0 — это MSB и LSB соответственно. Мы можем понять работу 3-битного асинхронного двоичного счетчика из следующей таблицы.
Нет отрицательного края часов | Q (LSB) | Q 1 | Q 2 (MSB) |
---|---|---|---|
1 | 1 | ||
2 | 1 | ||
3 | 1 | 1 | |
4 | 1 | ||
5 | 1 | 1 | |
6 | 1 | 1 | |
7 | 1 | 1 | 1 |
Здесь Q 0 переключается для каждого отрицательного фронта тактового сигнала. Q 1 переключается для каждого Q 0 , который идет от 1 до 0, в противном случае остается в предыдущем состоянии. Аналогично, Q 2 переключается для каждого Q 1 , который изменяется от 1 до 0, в противном случае остается в предыдущем состоянии.
Начальное состояние T-триггеров в отсутствие тактового сигнала: Q 2 Q 1 Q 0 = 000 . Это значение увеличивается на единицу для каждого отрицательного фронта тактового сигнала и достигает максимального значения на 7- ом отрицательном фронте тактового сигнала. Этот шаблон повторяется, когда применяются дополнительные отрицательные фронты тактового сигнала.
Блок-схема 3-битного асинхронного двоичного счетчика с понижением аналогична блок-схеме 3-битного асинхронного двоичного счетчика с повышением частоты. Но единственное отличие состоит в том, что вместо подключения обычных выходов одноступенчатого триггера в качестве тактового сигнала для триггера следующей ступени, подключите дополненные выходы одноступенчатого триггера в качестве тактового сигнала для триггера следующей ступени. Дополняемый вывод идет от 1 до 0 так же, как нормальный вывод идет от 0 до 1.
Предположим, что начальный статус T триггеров с крайнего правого на самый левый равен Q 2 Q 1 Q 0 = 000 . Здесь Q 2 & Q 0 — это MSB и LSB соответственно. Мы можем понять работу 3-битного асинхронного двоичного счетчика с понижением из следующей таблицы.
Нет отрицательного края часов | Q (LSB) | Q 1 | Q 2 (MSB) |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 1 | |
3 | 1 | 1 | |
4 | 1 | ||
5 | 1 | 1 | |
6 | 1 | ||
7 | 1 |
Здесь Q 0 переключается для каждого отрицательного фронта тактового сигнала. Q 1 переключается для каждого Q 0 , который идет от 0 до 1, в противном случае остается в предыдущем состоянии. Аналогично, Q 2 переключается для каждого Q 1 , который идет от 0 до 1, в противном случае остается в предыдущем состоянии.
Начальное состояние T-триггеров в отсутствие тактового сигнала: Q 2 Q 1 Q 0 = 000 . Это уменьшается на единицу для каждого отрицательного фронта тактового сигнала и достигает того же значения на 8- ом отрицательном фронте тактового сигнала. Этот шаблон повторяется, когда применяются дополнительные отрицательные фронты тактового сигнала.
Отличие работы двигателей — в роторе. У синхронного типа он заключается в постоянном или электрическом магните. Благодаря притягиванию разноименных полюсов вращающееся поле статора влечет и магнитный ротор. Их скорость получается одинаковой. Отсюда и название — синхронный.
Асинхронные двигатели, в свою очередь, просты и надежны, но их недостатком является трудность регулировки частоты вращения. Для реверсирования трехфазного асинхронного двигателя (то есть изменения направления его вращения в противоположную сторону) меняют расположение двух фаз или двух линейных проводов, приближающихся к обмотке статора.
Если рассматривать частоту вращения, то имеют и здесь синхронный и асинхронный двигатель отличия. В синхронном типе этот показатель является постоянным, в отличие от асинхронного. Поэтому первый используют там, где необходима постоянная скорость и полная управляемость, например, в насосах, вентиляторах и компрессорах.
Выявить на том или ином устройстве наличие рассматриваемых типов приборов очень просто. На асинхронном двигателе будет не круглое число оборотов (например, девятьсот тридцать в минуту), в то время как на синхронном — круглое (например, тысяча оборотов в минуту).
И те, и другие моторы управляются достаточно сложно. Синхронный тип имеет жесткую характеристику механики: при любой меняющейся нагрузке на вал мотора частота вращения будет одной и той же. При этом нагрузка, конечно, должна меняться с учетом того, чтобы двигатель способен ее выдержать, иначе это приведет к поломке механизма.
Так устроен синхронный и асинхронный двигатель. Отличия обоих видов обуславливают сферу их использования, когда один вид справляется с задачей оптимальным образом, для другого это будет проблематичным. В то же время можно встретить и комбинированные механизмы.